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This thesis looks at three aspects related to the design of E-commerce systems,

online auctions and distributed grid computing systems. Weshow how formal verification

techniques from computer science can be applied to ensure the correctness of system design

and implementation at the code level. Through an e-ticket sales example, we demonstrate

that model checking can locate subtle but critical flaws thattraditional control and auditing

methods (e.g., penetration testing, analytical procedure) most likely miss. Auditors should

understand formal verification methods, enforce engineering to use them to create designs

with less of a chance of failure, and even practice formal verification themselves in order to

offer credible control and assurance for critical e-systems.

Next, we study why many online auctions offer fixed buy pricesto understand why

sellers and auctioneers voluntarily limit the surplus theycan get from an auction. We show

when either the seller or the bidders are risk-averse, a properly chosen fixed permanent buy-

price can increase the social surplus and does not decrease the expected utility of the sellers

and bidders, and we characterize the unique equilibrium strategies of uniformly risk-averse

buyers in a buy-price auction.
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In the final chapter we look at the design of a distributed grid-computing system.

We show how code-instrumentation can be used to generate a witness of program execution,

and show how this witness can be used to audit the work of self-interested grid agents. Us-

ing a trusted intermediary between grid providers and customers, the audit allows payment

to be contingent on the successful audit results, and it creates a verified reputation history

of grid providers. We show that enabling the free trade of reputations provides economic

incentives to agents to perform the computations assigned,and it induces increasing effort

levels as the agents’ reputation increases. We show that in such a reputation market only

high-type agents would have incentive to purchase a high reputation, and only low-type

agents would use low reputations, thus a market works as a natural signaling mechanism

about the agents’ type.
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Chapter 1

Introduction

This dissertation is a sample of the research I have done during my 7 years in the doctoral

program. It includes three independent works covering the fields of Economics, Computer

Science and Information Systems.

Chapter 2 represents my early research on the use of formal verification methods

to audit e-commerce systems. An e-commerce system is in facta distributed computing

environment where several concurrent programs, often running on different computers, in-

teract with each other and with the outside world. Online businesses are highly automated,

and are heavily dependent on the correct design and operation of their systems. They must

ensure timely responses to consumer requests, they must guard consumers’ private infor-

mation and increasingly often they have to be able to resist malicious attacks. I propose that

beyond conventional testing methods firms must also employ formal verification methods,

especially to find problems stemming from the interaction ofconcurrent independent pro-

grams. Admittedly, this chapter does not contain any original results, but, through simple

examples, it shows how formal methods can be applied in the e-business context. Parts of

the work presented in Chapter 2 was published in [1].

In Chapter 3 I study permanent buy-price auctions. A fixed buy-price is posted

throughout such an auction, and any bidder at any time can exercise the option of purchasing

the item for sale at this fixed price. Clearly, this fixed buy-price puts an upper limit on

the maximum surplus which can be achieved by the seller, but Ishow that despite that

the seller’s utility increases when either the seller or thebuyers are risk-averse, and the
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buy-price is not too low. I also calculate the unique equilibrium strategies of bidders in

these auctions under the assumption that all bidders share the same linear or concave utility

function. The work in this chapter has been published in [2].

In Chapter 4 I describe my current ongoing research focusingon the design of

grid computing systems. To be able to build a commercially viable grid infrastructure one

must design an economic incentive system which induces self-interested profit-maximizing

agents to honestly perform the tasks assigned to them. I introduce a “witness” system which

is similar to a message-digest of the execution paths taken while running a program. This

system can be implemented in software via code instrumentation, however, in the future it

could be easily integrated into CPU hardware to reduce the computation overhead. I use this

to design a mechanism where a trusted intermediary audits the agents by assigning some

jobs to multiple agents and comparing their results. This enables contracts where payment

is contingent on the audit results, and it allows the intermediary to build a reputation history

for market participants. I show that allowing the free tradeof reputations in an open market

induces the agents to put in increasingly more effort than minimally necessary as their

reputation increase, and I show that in this market an agent can signal her type by purchasing

an expensive good reputation when she is high-type, but onlyusing cheap low-reputations

names when she is low-type.

2
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Chapter 2

Model Checking – A Rigorous and Efficient Tool
for Preventing E-business Failures

Abstract

An unexpected error in an e-business’ processing system maylead to devastating failures.

Luckily, model checking, an advanced formal verification method, can thoroughly verify

the correctness of critical e-systems [1]. Temporal logic,coupled with automata-theoretic

verification, provides a rigorous and efficient means of specifying and assuring correct e-

process behaviors. Through an e-ticket sales example, we demonstrate that model checking

can locate subtle but critical flaws that traditional control and auditing methods (e.g., pen-

etration testing, analytical procedure) most likely miss.Auditors should understand formal

verification methods, enforce engineering to use them to create designs with less of a chance

of failure, and even practice formal verification themselves in order to offer credible control

and assurance for critical e-systems.

2.1 Introduction

In digital economy, many businesses leverage their critical business operations on Internet-

based e-processes. More and more resources are procured, managed, created and consumed

over Internet, Intranets and Extranets. Even the world’s financial markets, telecommuni-

cations, and the supply of water and power partially depend on the operations of massive

Internet-based information systems. Any error in a critical information system like those for

accounting, stock trading, banking and air traffic control can potentially cause devastating

3
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failures. Not to mention there are hackers or even terrorists aiming to discover and exploit

such errors. Tremendous operational uncertainties exist,some may result in disasters.

Many e-businesses have fallen victim to operational problems, ranging from poor

security, inadequate controls, to badly designed and unreliable systems [3]. Management

lacks reasonable assurance as to the effectiveness and efficiency of its e-operations, the

reliability of information for decision-making, and the overall compliance of e-operations

with applicable laws and regulations. Security breaches and e-service failures have become

a fact of life. The “Code Red” worm has affected world-wide Microsoft IIS servers and

Cisco routers causing many businesses to halt temporarily.Toys ‘R’ Us failed to fulfill

customer orders. Ashford labelled zero prices on luxury watches. Even big players may

tumble. On June 8, 2001, trading at the New York Stock Exchange halted for almost one

and a half hour due to a software glitch caused by changes madein its computing systems.

Current e-business operational incidents are mostly due tothe lack of integrity at

the low-level computing and networking services. From operating systems to browsers to

even anti-virus packages, nearly every major software has had a flaw or two; Windows

NT 4.0 had 164 security holes, Internet Explorer 69, Norton Antivirus 7, to name just a

few [4]. No wonder most past attacks exploited these easy targets. Consequently, current

countermeasures (e.g.,firewalls, encryption and patches)and the EDP auditing primarily

focus on these services as well [5].

Unfortunately, even if an ideal computing and networking environment exists in the

future, if e-business processes, running on top of the supporting computing and networking

services, are not designed or implemented properly, the e-business would still be vulnerable.

The incident of Ashford’s zero pricing was not a technical failure alone, but rather a lack of

input control over Web catalogs, a problem in the process design.

Hence, internal control and assurance over e-operations isessential. As in tra-

ditional commerce, e-commerce managers turn to their auditors for support, control and

4
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independent assurance. The auditing profession has already established CobiT1 for gen-

eral information system control [6] and introduced WebTrust and SysTrust [7, 8] targeting

e-commerce assurance. However, these products largely carry over traditional control con-

cepts and auditing methods [9], which is only a half-right solution. Traditionally auditing

methods – observing system behavior, inquiring of employees, examining documents, re-

processing data, and analyzing information through analytical procedures – are useful but

limited. One common feature is their generally informal andad hoc nature; none deliv-

ers mathematical certainty. Even their strongest statistics form inherently belongs to the

domain of testing and simulation, methods that have limitations.

The future success of auditors in the high-tech arena requires new perspectives and

methods suitable for e-commerce. We suggest that correct e-process design and imple-

mentation should the first line of defense against errors, fraud and hacking. Minimizing

operational faults is critical but not easy. E-business systems are often so complex that

they overwhelm the traditional methods. The complexity partially arises from the fact that

e-systems are non-stop, non-deterministic computing systems, within which multiple pro-

cesses with no location constraints execute around the clock in an asynchronous and highly

interactive fashion. These concurrent processes execute many tasks in unpredictable order,

resulting in virtually unlimited event possibilities and therefore many uncertainties. Like

many construction or mechanical engineering disasters, the more possibilities of compo-

nent interactions, the more chances that there is a whole strain of events that happen in a

certain order no one has anticipated may bring systems down.Like builders of bridges have

to consider aerodynamic problems, e-business designers need to take into account stresses

caused by new Internet operation environment.

Carefully designed and implemented code can handle most expected situations and

hence can function well within these defined boundaries. However, it is impossible to con-

1CobiT: Control Objectives for Information and related Technology.

5
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sider all potential scenarios due to the complexity and human bounded rationality. Hidden

flaws and errors, triggered mostly under unexpected scenarios, lead to potentially devastat-

ing disasters. For instance, subtle programming bugs have been identified as the culprit of

the explosion of the $500 million European Ariane 5 rocket in1996 [10] and the loss of the

$165 million Mars Polar Lander in 1999 [11]. The chip and telecommunication industries

have long experienced the devastating effects of numerous simple but hard-to-detect errors.

As we will demonstrate with a rather simple example, a deadlock, occurring only when

certain system resources are overloaded, can bring an entire system to a halt.

Time pressure to market and the unfamiliarity with the new technology and econ-

omy add more difficulties in system design and implementation, which are often neither

thorough nor correct. Interconnectivity of the Internet widens the scope of an attack al-

lowing the remote and anonymous exploitation of hidden flaws. Auditors, no less than

management, need to catch these mistakes before hackers andfraudsters. Penetration test-

ing, analytical procedures and test of details, primarily based on sampling and statistical

analysis, are inadequate to catch hidden flaws. Similar to the use of formal methods in

work-flow [12, 13] and knowledge-based systems [14], formalverification can supplement

traditional methods and has its niche in e-commerce. Formalmethods is to e-business

process engineering can be what fluid dynamics is to aeronautical engineering and what

classical mechanics is to civil engineering because their reasoning capabilities are essen-

tial to proper designs and more powerful than human authorities or experiences. Like the

introduction of statistical methods to auditing in the 1960s, we fuse modern formal verifi-

cation techniques to internal controls and assurance services. To date, formal verification

techniques have been successfully applied to complex microprocessor designs and criti-

cal telecommunication protocols. Only recently have a few designers applied them in the

business integrity domain [1, 15, 16, 17, 18].

A powerful yet efficient formal verification method is model checking, which can

6
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verify concurrent, non-stop systems. It can locate subtle but critical flaws that are most

likely to be missed by conventional control and assurance methods. Unlike the traditional

EDP methods which generally only analyze the input-output semantics of a system and are

largely based on the manual or computer-aided, post verification of point-in-time states,

model checking analyzes both states and state transitions,and provide automated, proactive

and continuous control and assurance. In addition, while traditional methods primarily ad-

dresses only “safety” properties (“never” or “always” claims, e.g.,debits = credits), model

checking can also verify “liveness” properties (“eventuality” claims like “a system pro-

gresses without unwanted halt or infinite loop”), essentialfor the correctness of non-stop

e-systems.

The paper is organized as follows. In Section 2.2, we discusswhy model check-

ing has its advantages over testing and simulation. Section2.3 depicts current industrial

applications of formal verification. In Section 2.4, we drawthe analogy between formal

verification and assurance method spectrums. In Section 2.5, we theoretically explain how

model checking works and demonstrate with a traffic control example. In Section 2.6, we

build an e-business prototype, an e-ticket sale system, andverify its correctness using two

model checkers. In Section 2.7, we discuss the research contributions and limitations.

2.2 Testing and Simulation vs. Formal Verification

Although testing and simulation have been applied extensively in system control and as-

surance, they have inherent limitations when compared to modern formal verification tech-

niques like model checking (Table 2.1).

The major limitation of testing and simulation (Table 2.1, Item Ia) is that they only

check a fraction of system behaviors. Hence, conclusions based on the partial coverage of

the state space inherently convey only probability rather than certainty. Research shows

that testing and simulation probably need to be conducted over more than half of the entire

7
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Item Testing & Simulation (a) Model Checking (b)
I Impossible to cover all system states,

but bugs and errors often hide in hard-
to-anticipate scenarios or corner cases.

Operate on logic and cover the entire
state space.

II Need expertise to find test vectors
leading to critical execution paths.

Need expertise to model processes and
properties, but verification is auto-
mated.

III Tools do not depict what lead to errors.Graphic tools exist to depict what sce-
narios lead to errors.

IV Check only “safety” properties. Verify both “safety” and “liveness”
properties.

V “Around the system” approaches can
be taken advantage of by hackers.

“Through the system” verification re-
quires the knowledge of the system, of
which hackers do not have.

VI Apply traditionally only after system
implementation.

Apply in parallel with the system de-
velopment life cycle.

Table 2.1: Comparison between testing & simulation and model checking

useful life of a system in order to discover just one-third ofthe total errors [19].

Consider an e-process as a state machine and represent each of the process’ states

with a vector composed of the simultaneous values of all process variables and the instruc-

tion pointer of the current execution. The state space of a system includes all the plausible

combinations of the states of all the system processes. Evenfor a simple system with few

processes, the state space can be astronomically large, easily exceeding the number of parti-

cles in the Universe. Testing and simulation execute a system with chosen test vectors, i.e.,

input sequences attempting to exercise critical executionpaths. In most cases this effort

covers only a microscopic portion of the state space. For example, a Web catalog with a

search interface can be tested with selective search patterns, yet it is impossible to try all

query combinations.

Testing and simulation become even harder when a system has several interacting

components running in parallel, creating uncertainties due to the non-determinism of com-

8
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munication and component performance. Hidden errors like “race conditions” or “dead-

locks” are likely to occur in such a system but often triggered only under certain obscure,

hard-to-guess situations. It is extremely difficult, if notimpossible, to select the test vectors

that can catch these errors.

Testing and simulation can provide reasonable system assurance if carefully se-

lected test vectors exercise all important execution paths. However, the creation of a good

test requires insightful or even imaginative work by those with an intricate knowledge of the

system design and implementation (Item IIa). Although tools exist to measure the coverage

of testing and simulation, they do not provide automated means to create test patterns cover-

ing missing critical paths that may lead to problematic regions of the state space. Moreover,

each time a process changes, test vectors normally have to bemodified to cover the new or

modified execution paths. Because of the difficulty selecting test vectors, test vectors are

sometimes generated randomly. But for complex systems the probability of hitting a bug

in a reasonable time with random tests is close to zero [20]. Moreover, in case a mistake

is found, testing and simulation tools usually cannot depict how the problem occurs (Item

IIIa).

In contrast, formal verification spans the entire state space of a system and prove

property-satisfaction with mathematical certainty: if a system is formally verified to have a

given attribute, no system behavior can ever be found to contradict this attribute (Item Ib).

The reason why formal verification can achieve the exhaustive examination of a

property is because it analyzes the logic among processes rather than executes them. And

avoiding examining individual executions makes formal verification efficient. Figure 2.1

illustrates a particular model checking algorithm. It starts with a set of “bad” states (states

that violate the property under examination) and repeatedly expands this set by adding

states from which a bad state can be reached and marks these states “bad” as well. In

a finite state system, this procedure eventually covers all the states with an execution path

9
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leading to bad states. If the initial state is marked “bad,” it implies the existence of execution

path(s) leading to the violation of the property. This verification procedure, based on set

operations, covers states much faster than testing and simulation where each test covers

only a few states. It also delivers more reliable results because testing and simulation can

find out property violation if and only if one of the executionpaths leading to a bad state

happens to be chosen as a test vector. There are numerous examples of hardware flaws

and software bugs which could have caused significant commercial damages were missed

by testing and simulation but located quickly with formal verification [21, 22]. For critical

system properties, the thorough examination offered by formal verification should be highly

desired or even considered necessary.

a

State Space

f
e d

c

b

Test Vector

Bad States

Initial State

Figure 2.1: Testing and Simulation vs. Model Checking

In addition, model checking can verify both “safety” and “liveness” properties

(Item IVb). Safety properties are commonly examined in current debugging practices and

testing and simulation can guarantee that safety assertions hold for the set of test patterns

considered (Item IVa). In practice a set of test vectors are often run to discover minor and

obvious bugs before applying formal verification to find hidden errors. Verifying liveness

10
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properties are generally omitted in testing and simulationbecause a system simply cannot

be exhaustively tested through executions in a finite time. However, when an e-business

offers 24*7 services handling numerous service requests, it is important to know that every

service request is eventually fulfilled and the non-stop system does not go into an infinite

loop which precludes useful behaviors. Model checking can verify liveness properties, as

we will explain later in details.

Moreover, testing and simulation are “around the system” approaches (Item Va),

which can be used by hackers to “reverse engineer” a victim’ssystem. A “brute force”

attack is such an extreme form of testing and simulation. System designers and auditors

compete against hackers in a race to find critical test vectors that may lead to system mal-

functions. They can improve their odds by using “direct engineer” techniques “through the

system,” such as formal verification (Item Vb). Although some formal verification tools can

be freely downloaded, their effective use still requires full access to system resources (e.g.,

source code), access not generally available to hackers; hackers can only execute source

code but have no read/write privileges.

To achieve high level control and assurance, systems must beoriginally designed

to be testable and verifiable. Testing and simulation traditionally only occur after system

implementation is complete (Item VIa). Even though certainsoftware development like

fast prototyping supports testing before implementation [23], it is uncertain how much one

should rely upon the testing results of an incomplete systemwhen claiming the assurance

of the entire system. Research on model checking however, considers decomposition2 and

localization3 issues and suggests methods to modularize a system with rigorous interfaces

that facilitate component-based verification. Formal verification should and can be adopted

in parallel to system development to ensure every step is warranted (Item VIb). Even though

2Decompose a property to several sub-properties.
3Select relevant states and state transitions local to a sub-property that needs to be verified.
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proving the correctness of a system is complex, fortunately, once such a proof exists, it is

robust to re-examinations.

Auditors should promote the “design for testability and verifiability” in e-business

application development and help set up the policies and procedures. If an application is

built primarily through integrating off-the-shelf software packages, internal auditors should

advise the procurement and IT departments to purchase packages with independent, credi-

ble assurance and help examine the integration process. Forin-house application develop-

ment, internal auditors should enforce designers/developers follow the “design for testabil-

ity and verifiability” policies and procedures. Later on, external auditors can build upon the

internal auditors’ opinions to further investigate a system and provide independent assur-

ance.

2.3 Industrial Applications of Formal Verification

Proving the correctness of computation (e.g., the Euclidean algorithm) is not new. Turing

was among the first to realize its importance. However, it wasnot until the 1960s and early

1970s that provably correct computation began to attract much research attention [24]. But

industrial applications had to wait until 1994, when formalverification was first used for the

verification of chip designs. After the discovery of the notorious FDIV error of the Pentium

chip, Intel invested heavily in formal verification. Today,most players in the hardware

industry, like Intel, AMD, IBM, and Motorola, all have formal verification teams to work

on selected chip properties. It is due to both the high cost ofa problem fix and the potential

legal liability after a chip is on the market; e.g., Intel spent over $400 million to recall its

Pentium chips and Toshiba paid $2 billion in an out-of-courtsettlement of a lawsuit against

its faulty design of a simple chip.

Formal verification in the software industry only began in 1997. As might be ex-

pected, early applications were in mission-critical systems like telecommunications where a
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small bug can disrupt many services. Applying verification to software in general has been

promoted, but not well received. This is mainly due to the lack of incentives for software

companies to provide rigorous quality assurance. They relyon users and even hackers to

debug their software, after which they distribute fixes via the Internet with almost no cost.

Ironically, software vendors can even get extra revenue from bug fixes. It is not uncommon

to charge customers for upgrades that, apart from bug fixes, provide almost no extra func-

tionality (e.g., the upgrades from Windows 95 to 98, and to ME). Moreover, software bugs

have not led to serious litigation threats. Vendors disclaim all warranties in their software

license agreements so that customers have no legal power to urge them to provide quality

products. Of course, software vendors do not want to sell software that is too buggy to

use because of the fear of reputation loss and new market entrants. Their common practice

is to use some testing and simulation to debug easy-to-anticipate errors and leave hard-to-

detect bugs to users. They often release “beta test” versions of a new product to recruit

free testers. But still, the initial release of a software isoften rushed to the market without

thorough examination.

As more and more critical business applications are implemented in software, we

suggest the use of formal verification for e-business assurance. Rather than relying on the

unwarranted promises of software vendors and in-house developers, e-businesses should

proactively verify that their e-systems conform to the requirements and will function well

in both benign and hostile environments. Auditors, promoting, overseeing, and even prac-

ticing the use of formal verification, can help e-business managers and shareholders build

confidence in e-operations.

2.4 Formal Verification vs. Assurance Method Spectrums

Beginning 1960s, research on formal verification focused onconstructing proofs from ax-

ioms and inference rules in the same way as constructing mathematics proofs. In the past

13



www.manaraa.com

four decades, formal verification has developed into a spectrum of methodologies, ranging

from manual proof of mathematical arguments, interactive computer-aided theorem prov-

ing, to algorithmic and automated model checking [25] (Figure 2.2).

Model−checkers/
Automata−based

procedures

Hand proof of
Mathematical
Arguments

More expressive power More automation

Theorem−proovers

Figure 2.2: The Formal Verification Spectrum

Manual proof of system correctness is very expressive but time-consuming, prone

to human errors, hard to verify4 and often an order of magnitude bigger than the original

system. Hence, it is not economically viable to manually prove the correctness of a busi-

ness software, even for very small ones with few hundred lines of code. Computer-aided

theorem provers like ACL25 are proof checkers designed to reduce human errors. But a

great deal of human expertise and manual hints are still needed to construct proofs and ex-

press them in a format acceptable to theorem provers. In addition, theorem provers do not,

in most cases, prove a statement false and provide little help in locating the cause leading

to a property violation. Therefore, theorem provers can notbe easily applied for business

software verification.

Unlike manual proof or theorem proving, model checking is automated and rela-

tively efficient in verifying system properties. Users onlyneed to state system models and

properties to verify; verification is automatically done bymodel checkers (Table 2.1, Item

IIb). It is the automation that makes model checking attractive to business control and as-

surance because it does not slow down the pace of applicationdevelopment dramatically.

Developers can still strive for short “time-to-market” without sacrificing quality. Moreover,

4The reliability of manual proof of mathematical arguments is based upon peer review.
5ACL2: A Computational Logic for Applicative Common Lisp.
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when a property does not hold, model checkers can help identify the scenarios leading to

the violation (Item IIIb) and hence facilitate system refinements.

By analogy, the assurance method spectrum (Figure 2.3) spans from manual col-

lection of evidence and professional analysis, computer-aided checking, to automated veri-

fication. However, current auditing practices of system observation, inquiry, document ex-

amination, data re-processing and analytical procedures,unlike manual proofs or theorem-

proving, cannot be considered as formal methods because they do not convey mathematical

certainties. But auditors can still straightly go for modern formal verification to rigorously

assure critical system attributes.

More flexibility More efficiency and automation

Model−checkers/
automata−based

verification

Manual collection
of evidence &

professional analysis

Computer−aided
checking

Figure 2.3: The Assurance Method Spectrum

2.5 How Model Checking Works

2.5.1 Theory

Applying model checking to a system consists of three primary tasks:

Modeling Modeling converts a system description into a model accepted by a model

checker. Such a formal model is often described in a Kripke structureM(AP,S, S0, R, L)

where

1. AP is the set of atomic properties, properties that can be immediately verified by

examining the current states, such as “credits = debits,” “ payment> 0,” etc.

2. S is a finite set of states.
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3. S0 ⊂ S is the set of initial states.

4. R = S × S is a transition relation that for every states ∈ S there is a states′ such

that(s, s′) ∈ R.

5. L : S 7→ 2AP is a function that labels each state with the set of atomic propositions

true in that state.

Intuitively, the Kripke structure is a directed graph, where nodesS represent the

possible system states, edgesR are the possible state transitions, and paths are the possible

system executions. This modeling approach allows the use ofalgorithms in graph theory to

verify the system.

It is impractical to directly describe a Kripke structure ofa large complex system.

Fortunately, most model checkers can create Kripke structures automatically from system

models. An automaton is a transformation of a Kripke structure.

Most model checkers have their own modeling languages to facilitate verification.

These languages are easy to learn because of their similarity to popular programming lan-

guages like C. In addition, most model checkers have built-in constructs (e.g., communica-

tion queues and message delays), which make the modeling of distributed systems relatively

easy.

Specification Specification is the description of the desired system properties. Tempo-

ral logic formulas should be used to specify concurrent e-systems. Temporal logic is a

precise mathematical formalism that can express temporal properties, i.e., the ordering of

events in time, without introducing time explicitly [26]. For instance, LTL can describe

that a property expressed in formulaf holds for “all time (Gf ),” “next time (Xf ),” “even-

tually (Ff ),” “until g holds (fUg).” Temporal logics can be classified according to whether

time is assumed to have a linear or branching structure. LTL is Linear Temporal Logic,
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CTL is a branching-time logic called Computational Tree Logic, and CTL∗ combines both

branching- and linear-time operators.

Verification Verification is the process of checking whether the system model satisfies its

properties. Given a Kripke structureM representing a finite-state concurrent system and

a temporal logic formulaf expressing a desired property, the checking isM |= f , i.e.,

whetherM is a model off .

There are four types of model checking: LTL, CTL, CTL∗, and automata-theoretic

model checking. We chose automata-theoretic model checking because automata are more

expressive than LTL and are capable expressing eventualityassumptions not expressible in

CTL and CTL∗. There are two classes of conventional automata:∗-automata, which has

finite accepting runs, andω-automata, where the accepting runs are countably infinite.We

choseω-automata because that can model the ongoing behavior of systems, and can express

not only state invariants but also eventualities; it accepts infinite executions, i.e., the inputs

of nonterminating processes.

Automata-theoretic model checking treats individual processesP1, P2, . . . , Pn as

separate state machinesM1,M2, . . . ,Mn; the systemω-automaton is the product of these

processω-automata:M = M1 ⊗M2 ⊗ . . .Mn. A model checker also converts a temporal

logic formulaf to a property automatonF . Model checking verifies whether the behavior

of M is accepted byF . The behavior ofM is defined in terms of its (nonterminating)

executions, each of the formx = (x0, x1, . . . ) where eachxi = xM1
∗ xM2

∗ · · · ∗ xMn
.

Let the language ofM , L(M), denote the set of all such behaviorsx of M and letL(F )

denote the set of all sequencesx accepted byF . Verification ofM satisfyingf consists

of proving the first language containmentL(M) ⊂ L(F ), which is equivalent to checking

thatL(M ⊗ ¬F ) is empty.

Although bothL(M) andL(F ) are infinite sets, it is possible to check the language
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containment in finite number of steps: constructM ⊗ ¬F and find the cycles in the finite

directed graph underlyingM ⊗ ¬F . Although there may be an infinite number of cycles,

each cycle is contained in a strongly connected component inthe graph. SinceM ⊗ ¬F

is a finite state system, it has only finite number of such components and any (infinite)

behaviorx must describe a trajectory which eventually cycles within astrongly connected

component. It is enough then to check that each strongly connected component is consistent

with the acceptance structure ofF , and there are efficient automated methods to verify this.

The checkL(M) ⊂ L(F ) requires searching a state space roughly of size|M ⊗

¬F |. In other words, the computational complexity of this checkis linear to the size of

the state space of the analyzed system and to the size of the negated property automaton.

Decomposition and localization methods can further reducethis complexity.

2.5.2 An Example – A Crossroad Traffic Control System

Next we explain how model checking works using a crossroad traffic control system, taken

from [21].

Modeling A traffic intersection system has three processes: AvenueA, BoulevardB and

traffic ControllerC. Figures 2.4 and 2.5 depict the states and state transitionsfor processA

andC. Each of processA,B,C has two states; hence, the system has eight states.

The traffic control system is one of the simplest systems thatdeal with coordina-

tion of concurrent processes, but it can illustrate issues that may arise in larger systems.

Harmonic coordination is very important in distributed e-business systems. For example,

a ticket sale system that allows reservations from many agents must ensure that the same

ticket cannot be reserved twice simultaneously.

In the diagrams, at each state of each process, there are two possible outputs. State

transitions are described in Boolean predicates. One sample state transitionx of the system
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modelM is:

x((STOP, STOP, goA), (GO, STOP, goA))

= A(STOP, GO) * B(STOP, STOP) * C(goA, go A)

=(A:carswaiting)*(B:no cars)+(B:carswaiting))*(C:go A)

{(A:no_cars), (A:cars_waiting)}STOP

GO

(A:cars_going) *~(C:go_B)

{(A:cars_going), (A:no_cars)}

(A: cars_waiting) * ~(C:go_A)
(A:no_cars) +

(A:cars_going)
(A:no_cars) +

*(C:go_B)

(A:cars_waiting)*(C:go_A)A

Figure 2.4: States and State Transition Diagrams for Process Avenue A.

go_A

(C:go_A)*(B:cars_waiting)

go_B{(C:pause), (C:go_B)}

{C:pause).(C:go_A)}

(C:go_A) * ~(B:cars_waiting)
(C: pause) +

(C:pause)+(C:go_B) * ~(A:cars_waiting)

(A:cars_waiting)

(C:go_B) +
C

Figure 2.5: States and State Transition Diagrams for Process Controller C.

Properties We define two properties: “no cars collide” (safety) and “allcars on each road

eventually get through the intersection” (liveness). The temporal logic formulas are:

19



www.manaraa.com

1. G(¬((A:cars going) ∗ (B:carsgoing)))

2. G
(

((A:cars waiting) ⇒ F((A:no cars) + (A:cars going)))∗
((B:carswaiting) ⇒ F((B:no cars) + (B:carsgoing)))

)

Figures 2.6 and 2.7 show the corresponding property automata F1 andF2. An

initial state, if exists, is designated by the arrow entering the state. “+” marks a recur-edge,

meaning that any infinite path (through the transition structure of a property automaton)

crossing the edge infinitely often designates a behavior accepted by the automaton.F1

shows that every behavior ofM is accepted byF1 except for “carsgoing” on both roads,

in which caseF1 goes to state2 precluding an infinite number of recur-edge crossings.

Every safety property can be modeled by such a 2-state automaton. F2 depicts the liveness

property; a behavior is accepted byF2 unless on each road at some point cars are waiting,

and thereafter neither “nocars” nor “carsgoing” on that road ever become true.

2

1

+ else

true

(B:cars_going)
(A:cars_going) *

Figure 2.6: Theω-automatonF1 defining the safety property of “no cars collide.”

+2

1

else

else

+

+

(A:cars_going)
(A:no_cars) + ~(A:cars_waiting)

(B:cars_waiting)

(A:cars_waiting)

4

3

+

else

else

(B:no_cars) +
(B:cars_going)(A:cars_waiting)*

~(B:cars_waiting)

(B:cars_waiting)*

Figure 2.7: Theω-automatonF2 defining the liveness property of “all cars on each road
eventually get through the intersection.”
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Verification We now verify the crossroad traffic control system satisfies both properties,

i.e.,L(M) ⊂ L(F1) ∩ L(F2). As an illustration, we only verifyF2 here.

To simplify, we decompose the task of verifyingF2 into two local subtasks: “all

cars on Avenue A eventually get through the intersection” and likewise for Boulevard B.

Figure 2.8 represents theω-automatonFA defining the first subtask, and likewise forFB .

FA

2

1

else

+

+

(A:cars_going)
(A:no_cars) + (A:cars_waiting)

else

Figure 2.8: Theω-automatonFA defining the liveness property of “all cars on Avenue A
eventually get through the intersection.”

M is verified in the following steps:

L(M) ⊂ L(FA);

L(M) ⊂ L(FB);

L(A) ∩ L(B) ⊂ L(F2)

Task localization replaces a system modelM with a simplified one by collapsing

those portions ofM irrelevant to the performance of a task. SinceA andFA do not involve

B, we can have aM ′ = A⊗B′⊗C ′, where B’ and C’ are derived from B and C respectively

by collapsing every appearance of (B: nocars), (B: carwaiting) or (B: carsgoing) to (B:

null). Further, we can reduceB′ (Figure 2.9) toB′′ (Figure 2.10). Now the verification is

reduced toL(M ′′) ⊂ L(FA), whereM ′′ = A⊗B′′ ⊗C ′. Once we proveL(M) ⊂ L(FA)

it follows L(M) ⊂ L(FB) because of the symmetry.

Unfortunately, the verification ofL(M ′′) ⊂ L(FA) failed. It is possible that when

there are “carswaiting” on A, C may select “pause” instead of “goA” and the system does
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{(B’:null)}STOP

GO {(B’:null)}

(B’:null)

(B’:null)*(C’:go_B)B’(B’:null)

(B’:null)*~(C’:go_A)

Figure 2.9: State transition diagram for simplified processB′ with respect toFA.

trueB’’

{(B’’:null)}.
Figure 2.10: State transition diagram for further simplified processB′′ with respect toFA.

not specify how long C pauses. Therefore, the model should bemodified to forbid the

possibility that C may pause forever.

2.6 E-business Control and Assurance using Model Checking –An E-Ticket
Sales Example

In practice, model checkers can automatically fulfill many verification tasks: a user only

needs to describe processes and properties using a high-level programming language and a

model checker automatically translates them into automataand verifies the system. There

is no need to draw the state and state transition diagrams.

We demonstrate the feasibility of applying model checking to e-business control

and assurance through an e-ticket sales example [1], shown in Figure 2.11. Although sim-

ple, the example embodies main characteristics of an e-system – distributed and parallel

processing, concurrency, asynchronous communications, constraint resources, and non-stop
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operations. Many complex e-systems like online stock trading and e-retailing exhibit simi-

lar features.

Agent

Agent

.

.

.

.

.

.

Customer

Customer

Ticket
Server

Customer→ Agent: want to buy, cancelres, pay
Agent→ Customer: reserved, canceled, tickets, soldout,

try later, toomany, tablefull
Agent→ Ticket Server: reserve, get, cancel
Ticket Server → Agent: try later, soldout, toomany,

table full, granted, sent, canceled

Figure 2.11: An E-ticket Sales Example.

2.6.1 Modeling

The e-business sells e-tickets in limited quantities over the Internet. The sales are im-

plemented by coordinating e-processes. The following are the three e-process prototypes

involved: Customer, Agent and Ticket Server. Each customer/agent is an instance process

of the Customer/Agent prototype. There is only one Ticket Server T.

Customer Customers purchase e-tickets through web browsers from agents. Customers

can reserve, pay for tickets, and cancel reservations.

Agent Agents, implemented in Perl or Java, are the middlemen forwarding requests and

responses between customers and T. Agents are also responsible for verifying customer

payments. A customer’s payment is accepted only after the customer is notified about a

successful reservation. In case the payment is rejected, the customer’s agent would send a

“not approved” message to the customer and the reservation is canceled automatically.
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Ticket Server The database-implemented Ticket Server T centrally holds all the e-tickets

and communicates only with agents. T keeps track of the numbers of available, reserved

and sold tickets, denoted asa, r, ands. Let t represent the number of tickets to be reserved

in a particular transaction. A new reservation is made ift ≤ a. If a < t ≤ (a + r), T

responds “trylater.” If 0 < (a+ r) < t, T responds “toomany.” If a = r = 0, T responds

“sold out.”

To reduce the complexity of verifying the system, we made several simplifications

to exclude large uninteresting execution paths:

1. The system has a maximum two customers and two agents. Thissimplification still

preserves the distribution, interconnectivity, concurrency and non-determinism of an

e-system.

2. Only one ticket is left for sale. This may appear to be a significant restriction however,

it retains the most interesting executions as most problemsarise only when supply

cannot satisfy demand.

3. Computing resources are limited. An agent can handle onlytwo pending reservations

and the communication queue of each process can hold only onemessage at a time.

This restriction is realistic because e-processes always have limited resources.

4. Execution paths after Ticket Server’s “trylater” or “too many” responses are not

considered because once these responses are delivered to the customer, the system

state becomes the same as the state preceding the reservation.

5. Only one reservation cancellation is considered becauserepeated cancellations do not

create new situations.
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2.6.2 Properties

There are both safety and liveness properties of the system.Sample safety properties are:

1. When the ticket server closes, the number of tickets sold by the server equals to the

number of tickets bought by customers.

2. At all times the sum of the numbers of reserved, available and sold tickets always

equals to the total number of tickets.

Sample liveness properties are:

1. Every customer request is eventually responded to.

2. If customers reserve all the tickets and their payments are all approved, the tickets are

eventually sold.

2.6.3 Verification

We applied two model checkers, VeriSoft and SPIN6, and verified the e-ticket sales system

in two stages – modeling both well- and ill-behaved customers.

2.6.3.1 Model Checkers Applied

VeriSoft was chosen because it can verify programs written in C/C++, two of the most

popular languages. Auditors can simply embed safety assertions in C/C++ code using

VS assert() and model non-deterministic events using VStoss().

The biggest advantage of VeriSoft is that it allows the verification of an existing

C/C++ program with minimal modifications to it. This is important because most current

6http://www.bell-labs.com/projects/verisoft/
http://netlib.bell-labs.com/netlib/spin/.
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programs are coded without formal verification. VeriSoft can be a handy tool for auditors

to perform add-on formal verification of client e-systems.

Moreover, VeriSoft has the minimal memory requirement because it makes no at-

tempt to remember visited states. This gives flexibility butat a price, i.e., inefficiency due

to the need for visiting and verifying the same state repeatedly. In extreme, VeriSoft may

fail to cover the complete state space in a reasonable time even if the state space is relatively

small. To limit the problem, VeriSoft provides VSabort to manually prune execution paths,

but this pruning makes verification less automatic.

Several other model checkers like SPIN avoid the revisit problem by remembering

visited states and consequently require more memory capacity. Remembering visited states

is only possible if the model checker knows the exact state space structure. C/C++ are too

general to meet this specification. Therefore, these model checkers usually have their own

languages to specify the system model, e.g., SPIN uses Promela. Since Promela is similar to

C, it was relatively easy to convert our C code into the Promela model. Promela is powerful

and efficient; the Promela model is richer than the C model yetimplemented with fewer

coding. SPIN translates the Promela model into an internal Kripke structure and searches

for paths leading to bad states or infinite loops.

Similar to VeriSoft, SPIN performs a depth-first search on the state space. But

at each state it only considers all possible transitions that lead to not-yet-visited states.

SPIN can verify safety properties by checking the assertions embedded in the Promela code

and liveness properties by checking if all infinite execution loops go through a “progress”

transition infinitely many times. For instance, a customer can keep reserving and canceling

reservations, causing infinite loops. A sophisticated system should be designed not to serve

such a customer after a few reserve-cancel cycles. If not, SPIN can detect the infinite

cycling of reserve-cancel as a livelock unless the reserve-cancel transition is marked with a

“progress” label.
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VeriSoft can verify C/C++ programs because of its add-on features. SPIN can

verify systems in any language but the system model has to be written in Promela. In any

case, once the system properties are defined and expressed and the system/system model is

implemented, verification by model checkers is automated, efficient and worthwhile. For a

detailed discussion on how VeriSoft and SPIN differ, see [1].

2.6.3.2 Finding the Bugs

At stage one, we modeled the customer process as well-behaved. A customer makes one

reservation at a time; after a reservation, the customer waits for the confirmation or rejec-

tion. In case of confirmation, the customer either pays or cancels the reservation. No bugs

were found in this predictable, normal situation.

At stage two, we modeled somewhat abnormal customer behaviors and two bugs

were identified: 1) a deadlock occurred and shut down the system when a customer (hacker)

constantly made reservations, and 2) the property “every request is eventually responded to”

was violated when a customer wanting a single ticket made tworeservations simultaneously

with two agents, a situation not unusual for Internet users.

VeriSoft and SPIN were both used at stage one. Only SPIN was used in stage two

because of its greater power and efficiency.

Deadlock When we modeled a hacker process which submitted reservations continu-

ously, SPIN identified a design flaw resulting in a deadlock. XSPIN, SPIN’s graphic tool,

helped pinpoint the scenario causing the deadlock (Figure 2.12).

Process 0 initiated the agent, hacker, and ticket server processes (numbered 1, 2

and 3 respectively). In state 46, the agent received the third reservation request from the

hacker. Since the agent had limited entry space in his reservation database table to hold

pending reservations (only a maximum of two in our model), instate 58, he tried to send a
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“table full” message to the hacker. The message was never read because the hacker, busy

sending out reservation requests, refused to process any message in his communication

queue. In state 60, the agent received a “granted” message from the ticket server respond-

ing to the first reservation and in state 63, the agent tried tonotify it to the hacker. But

this message cannot be sent because the hacker’s communication queue was full (only one

message can be held in our model). Also in state 63, the ticketserver intended to send a

“try later” message to the agent responding to the second reservation. It reached the agent’s

communication queue but was not read because the agent was still trying to contact the

hacker. Simultaneously, the hacker wanted to send another reservation request but failed

because the agent’s communication queue was full. So the agent and hacker were waiting

for each other in a deadlock. Two reasons for the deadlock: limited resources (common for

Web businesses) and the bad design of processes failing to handle multi-tasking.

Deadlocks are typical problems in distributed systems but hard to find or reproduce

because they often occur in corner cases. We have seen that deadlocks can result in unex-

pected system shutdowns. Hackers often exploit a deadlock for Denial-of-Service (DoS)

attacks.

After analyzing this deadlock scenario, we introduced “time out” to break the loop

– an agent failing to send out a message within a period of timewill handle another task.

With this addition the system can proceed even with such a hacker process. Similarly,

the system is also modified to ignore the hacker’s subsequentreservations if he does not

pay for the granted reservation within a reasonable time. “Time out” is commonly used

in networking protocols but not often in e-business applications. This example shows its

importance.

Specification flaw SPIN also identified a minor specification flaw. The problem occurred

in a corner case when the system has only one customer who wants only one ticket but
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makes two reservations simultaneously with two agents and all tickets are sold right after

the reservations.

Agent A, handling the customer’s first reservation, contacts the ticket server imme-

diately. Knowing that no more ticket is available, A quicklynotifies the customer. Hearing

the bad news, the customer leaves the system disregarding his another reservation to Agent

B. During this period, B, unfortunately overloaded or blocked, does not notice the cus-

tomer’s request. When B does notice and forwards it to the ticket server, the request remains

unresponded because the server closes when the system has nomore tickets or customers.

This violates the property “every request is eventually responded to.” To accommodate such

a situation, we redefined the specifications.

Our uncovering these flaws in the simplified system model is not hard. VeriSoft

considered 331,078 system states and the verification, running on a low-end 400 MHz Intel

Xeon server, took about only half an hour. SPIN, which is a more powerful tool, found

the problem in seconds, once the model has been expressed in SPIN’s language. This

demonstrates both the complexity of e-processes and the feasibility of using model check-

ing. Model checking can yield measurable business reliability for a reasonable amount of

effort. Traditional auditing methods, in contrast, can hardly do so. Physically observing

system behavior is impossible because of fast transaction speed and potentially large trans-

action volume. Inquiring employees, including designers and developers, will not uncover

the aforementioned flaws, because they should have programmed the countermeasures if

they had known. Examining documents or reprocessing data are reactive methods, too late

to prevent these flaws from resulting in negative impacts. Analytical procedures are limited

and time-consuming to pinpoint the execution paths leadingto the bad states, considering

over 300,000 states in even such a simple model. Only model checking can provide the

confidence that e-businesses desire.
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2.7 Conclusion

In the digital economy, software applications largely determine how businesses live their

digital lives. For those e-processes which have become the brains and nerves of an e-

business, their correctness is crucial. Fortunately, it isplausible in both theory and practice

to mathematically verify the correctness of e-processes. Model checking, an automated and

efficient formal verification method, can perform such a function.

Our research brings a method from another discipline to advance the field of au-

diting in the context of critical e-commerce systems. As auditing moves from a reactive

ex-post audit process to a proactive continuous one, we foresee that model checking will

become a valuable and practical tool. It is rigorous becauseit can verify system correct-

ness under all circumstances. If used correctly, model checking can help locate and correct

hard-to-anticipate but potentially crucial flaws that are often impossible to identify using

conventional control and auditing methods.

Applying formal methods in auditing is not new. TICOM [27] was a formal method

to analyze accounting information systems and detect control problems. Model checking is

much more powerful and efficient for analyzing general information systems. For critical

e-systems, it should be an essential part of internal control and a supporting tool of external

assurance.

The auditors have many key advantages in applying model checking:

1. their potentially strategic roles in advocating formal verification to the management

and revolutionizing e-business development practices;

2. their experience with business processes and professional expertise in defining rele-

vant and complete system properties;
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3. their well-established reputation for competence and independence in providing cred-

ible trust services.

Although model checking is powerful, it has limitations. Model checking can

guarantee system correctness with regard to certain verifiable properties but it is difficult

to provide assurance over the entire system. Limiting factors include: the complexity of

business systems, the difficulty of system modeling, the limited expressiveness of formal

presentation languages, and the complexity and cost of current reasoning procedures. To

combat these limitations, there are ongoing researches, such as on machine-checkable log-

ics of authentication [28], security property specifications of e-commerce protocols [29],

and testbeds to experiment how to assist people without training in formal techniques to

effectively apply model checking in business[16].

In summary, this research helps to eradicate two of the three“practice barriers” to

internal control quality assurance [30] – the lack of adequate criteria for measuring internal

control quality and the lack of methods for auditing a process. We suggest auditors first ap-

ply model checking to mission-critical and pervasive business applications (e.g., significant

financial trading processes and essential building blocks for e-commerce applications) and

focus on the critical properties (e.g., by analogy, in the Titanic case, the strength of steel

rather than the color coordination of decorations). Auditors can outsource the verification

over hardware, operating systems, application development tools and commercial business

systems like SAP, to computer specialists but instead focuson the verification of business

applications unique to the client. Although reliance and independence issues will arise,

such a practice is not impossible.
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Figure 2.12: A scenario in the e-ticket sales example causesa deadlock. The figure is
based on a Message Sequence Chart window of XSPIN. Vertical lines represent processes,
boxes represent states. Messages are labelled by “receiving process!request/reply, sending
process, and other information.” If a message is only sent but never received, i.e., the
message is taken out of the communication queue and read by the receiving process, the
label appears near the sender. Otherwise, an arrow goes fromthe sender to the receiver and
the label is near the arrow.
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Chapter 3

Buy-price English Auction

Abstract

Consider an English auction for a single object in which there is an option for a bidder to

guarantee a purchase at a seller-specified buy priceb at any time. We show that there exist

ṽ andv̂ (≥ ṽ), such that a bidder purchases at the buy price immediately if his valuationv

is no less than̂v or ṽ ≤ v < v̂ and at least one other bidder is participating in the auction. If

b ≤ v < ṽ, he purchases at the buy price once the current bid reaches a strategically chosen

threshold price. A properly set buy price increases expected social welfare and the expected

utility of each agent when either buyers or seller are risk-averse.

3.1 Introduction

The popularity, scope, and competitiveness of online auctions have encouraged auctioneers

to innovate. Particularly noteworthy is the use of a buy price in English auctions where

the seller announces a maximum bid level, at which any biddercan immediately win the

auction. Since the start of such auctions in 19991, there has emerged a significant portion

of sellers who choose to utilize buy prices [31, 32]2. For example, our preliminary study of

over seven thousand sports rookie card auctions at Yahoo! suggests that about half of the

1Yahoo! started offering auction sellers the option to utilize buy prices in 1999 whereas eBay implemented
its version of the buy price practice in November 2000.

2The list of data on the proportion of auctions with buy prices: eBay 2001 data shows 30% in 1Q 2001,
35% in 2Q 2001, and 45% in Dec 2001 [32]. 40% on eBay and 66% on Yahoo! in 2002 [31]. 37% on Bid or
Buy in 2001 [32].
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auctions utilized buy prices and that approximately one fourth of them ended with bidders

exercising that option.

Wang [33] shows that an auction yields higher expected seller revenue than a

posted-price sale when the auction is costless. Auctioningonline is very affordable, and

its popularity indicates that many sellers have recognizedthe superiority of auctions over

posted-price sales. Then why would the seller prefer to specify a posted price when dy-

namic pricing is in play and consequently restrict her maximum payment? Should bidders

also favor buy prices? If so, what are their equilibrium strategies for such auctions?

Before addressing these issues, we need to clarify the categories of buy prices.

Currently, there are three types of buy prices: “permanent,” “temporary,” and “limited.” A

permanent buy price remains valid during the entire course of the auction. Yahoo!’s “buy

now,” uBid’s “uBuy It,” and Amazon’s “Take-It” prices all fall into this category. Notably

missing from this list is eBay, which offers only a temporary“buy-it-now” feature that

disappears as soon as any bid is made at or above the reserve price. A buy price is limited

if it is valid only for a restricted period of time during the auction3.

This paper focuses on the study of permanent buy prices because they allow for

an ultimately hybrid model combining posted-price sales and auctions. For simplicity, we

generally refer to the “permanent” buy price as the buy pricein the following discussions,

and we specify other types explicitly.

Budish and Takeyama [34] are the first to have recognized the benefits of buy prices.

Using a simple two-bidder, two-value model, they conclude that with a properly set buy

price, the seller facing risk-neutral buyers earns the sameexpected profit as in a standard En-

glish auction, but the seller facing risk-averse buyers gains higher expected profit. Reynolds

3For example, labx.com, specializing in the auctions of scientific equipment, requires that “an Auction Stop
bid must be entered 48 hours prior to the auction close or the Auction Stop feature is dropped and the auction
continues to the ending date specified.”
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and Wooders [31] confirm this result in a model of two bidders with uniform distribution.

But Budish and Takeyama [34] express doubts about the extension of their results

to a general setting. They conjecture that “in a more generalframework withn valuations,

the optimal buy price may be less than the second-highest valuation, which admits the

possibility of inefficient outcomes. In this case, revenue equivalence breaks down and the

effectiveness of the buy price to enhance sellers’ profits when bidders are risk-averse may

be diminished.”

We show that Budish and Takeyama’s doubts are unfounded. We prove that, in a

setting ofn bidders with arbitrary continuous value distribution, if abuy price is properly

set, revenue equivalence still holds when agents are risk-neutral, and the buy price still

enhances sellers’ profits when bidders are risk-averse. We further prove that if neither

sellers nor bidders are risk takers, an English auction augmented with a properly set buy

price weakly dominates the standard English auction. And more surprisingly, a buy-price

English auction not only increases the expected social welfare, but also ensures that the

expected utility of each agent is never lower than it is in a standard auction. Particularly

when either the seller or buyers are risk-averse, the seller’s expected utility is strictly higher

than that in a standard auction and without lowering the buyers’ expected utilities.

Utilizing buy prices in auctions can be viewed as providing aform of insurance for

risk-averse buyers. If these buyers’ valuations are above the buy price, they can bid the buy

price to achieve a fixed profit instead of taking the risk of losing the item when bidding

below the buy price. These buyers would pay premiums for avoiding the risk. Similar to

how insurance companies make money, the seller utilizing buy prices profits by exploiting

the risk aversion of these buyers. But unlike insurance, theseller does not have to be risk-

neutral to benefit from buy prices; a risk-averse seller can gain even more because utilizing

buy prices reduces the variance of seller revenue.

To prove the superiority of a buy-price English auction, we need to define buyers’
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equilibrium strategies. We will prove that a unique Bayesian Nash equilibrium exists for

buyers when there are unique reference pointsṽ andv̂ (ṽ ≤ v̂, and both above the buy price)

so that a bidder with a valuation between the buy price andṽ is a threshold bidder who

exercises the buy price once the current high bid reaches a strategically chosen threshold

price, a bidder with a valuation betweenṽ and v̂ is a conditional bidder who bids the buy

price immediately on the condition that at least one competing bidder bids at or above the

reserve price, and a bidder with a valuation abovev̂ is an unconditional bidder who selects

to purchase at the buy price instantly with no conditions. Wewill prove that a lower bound

exists so that if the buy price is at or above this bound, then all bidders with valuations above

the buy price are threshold bidders. In this case the auctionis efficient; it guarantees that the

bidder with the highest valuation wins, because a bidder with a higher valuation has a lower

threshold price. Moreover, the more risk-averse a bidder, the lower his threshold price. The

seller thus has higher expected utility from risk-averse buyers than from risk-neutral buyers.

The paper proceeds as follows. In Section 3.2, we lay out the model, state and

prove the bidders’ unique Bayesian Nash equilibrium strategies. We also compare behav-

iors of bidders with different degrees of risk aversion. In Section 3.3, we prove that both

risk-averse and risk-neutral bidders are not worse off in a buy-price English auction. We

analyze the impact of the seller’s risk preference on the useof buy prices and prove that

the seller is never worse off utilizing properly set buy prices. We also derive the lower

bound of a properly set buy price. Section 3.4 provides more intuitions about our results

and recommends future research directions.

3.2 Bidders’ Equilibrium Strategy

3.2.1 The Model

There is one seller andn bidders in a buy-price English auction of an indivisible good.

Only bids at or above the reserve price are valid, and the seller has committed not to relist

36



www.manaraa.com

the item if no valid bid emerges. This no-resale constraint is a standard assumption and

is naturally satisfied in cases of perishable or time-sensitive goods like flowers or tickets.

We also assume bidders have independent private valuations. This assumption is restrictive

but is closely emulated by auctions of collectibles or used goods. Our empirical study also

supports such an assumption because the data show that most sports rookie cards purchased

through auctions are for collection rather than for resale –buyers seldom resell the cards

they have just purchased.

To simplify the analysis, we use a “modified English clock auction” as our model,

which has a set of rules as follows:

• The seller announces both a reserve price and a buy price before the auction starts.

The auction starts at a pre-announced time with the auction clock being set at the

reserve price. Each bidder controls two buttons: a “bid” button and a “buy” button.

A bidder signals his willingness to pay the current clock price by pressing and holding

down his “bid” button. Once a bidder releases his “bid” button, he quits the auction

and can no longer return. A bidder does not know how many otherbidders participate

in the auction. At any time, a bidder can press his “buy” button signaling that he bids

the buy price. A bidder can start signaling his actions even shortly before the auction

starts.

• At the start of the auction, the auctioneer checks the state of bidders’ buttons. If only

one “buy” button is pressed, the auction ends and the bidder who has pressed his

“buy” button wins, paying the buy price. If more than one “buy” button is pressed,

the winner is randomly chosen among those who have pressed their “buy” buttons.

If none of the “buy” and “bid” buttons is pressed, the auctionends without a sale. If

there is no “buy” button being pressed but one “bid” button isbeing held, the auction

ends and the bidder who holds his “bid” button wins, paying the reserve price. If
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there is no “buy” button being pressed but more than one “bid”button being held, the

auction clock starts ascending from the reserve price.

• The auction terminates when one of the following scenarios occur: 1) There is only

one bidder left holding his “bid” button. This bidder wins and pays the current clock

price. 2) There is a bidder who has pressed his “buy” button. This bidder wins,

paying the buy price. When more than one bidder have pressed his “buy” button

simultaneously, the winner is chosen randomly among them. And 3) The auction

clock reaches the buy price. The winner is chosen randomly among the bidders who

hold their “bid” buttons, and the winner pays the buy price.

3.2.2 Proof of Bidders’ Equilibrium Strategies

In a buy-price English auction, for a bidder with a valuationbelow or equal to the buy

price, his pure and dominant strategy remains the same as in astandard English auction,

i.e., to bid up to his valuation. However, the strategy spacefor a bidder with a valuation

above the buy price becomes more complicated. When there aremultiple bidders with such

valuations, the winner will be the one who first commits to thebuy price. If such a bidder

thinks that at least one other bidder exists who might bid thebuy price, he would find the

appropriate moment to bid the buy price before any other bidder. If he thinks that there is

no other bidder who might use the buy price, he would simply keep bidding. Consequently,

there is no dominant strategy for such a bidder; we could onlyhope to find a Bayesian Nash

equilibrium.

To find such an equilibrium, we first need to characterize all possible pure strategies

that a bidder can follow:

• Traditional: Bid up to his valuation;
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• Threshold: Keep bidding until winning or his threshold price is reached. Once the

auction clock reaches his threshold price, bid the buy priceimmediately.

• Conditional: Bid, but use the buy price immediately if at least one other bidder bids

at or above the reserve price.

• Unconditional: Bid the buy price immediately with no conditions.

We can unite the above four strategies under a “generalized threshold strategy” in

which each bidder has a threshold price that determines if and when the bidder uses the

buy price. If the buy price is above a bidder’s valuation, he never uses the buy price and

hence we can assume he has a threshold price above his valuation. We can regard that a

bidder following the traditional strategy as having a threshold price equal to the buy price.

A bidder following the threshold strategy has a threshold price dependent on his valuation

and the buy price (as we will show later). A bidder following the conditional strategy can

be regarded as having a threshold price equal to the reserve price4, and a bidder following

the unconditional strategy can be regarded as having a threshold price less than the reserve

price, say, the lowest bidder valuation.

Let r denote the reserve price andb the buy price. Let us assume bidders’ valuations

are drawn randomly from the same cumulative probability distribution F , which is strictly

increasing and differentiable over the support of bidder valuations, [v, v]. Let f = F ′

denote the probability density. Letu(x) denote the bidder’s von Neumann-Morgenstern

utility function, wherex is the difference between the buyer’s valuation and his payment if

he wins and is zero if otherwise. Lets(p) denote the seller’s utility when she sells the item

4Conditional bidders use the buy price immediately upon learning that they have competition thus they can-
not obtain the item at the reserve price. They are different from unconditional bidders, because unconditional
bidders give up the chance to obtain the item at the reserve price, but in exchange, they are guaranteed to win
over any conditional bidders. Conditional bidders observethe auction clock and bid the buy price as soon as
they notice the auction clock departing from the reserve.
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and receives the paymentp. Bothu(x) ands(p), we assume, are linear or concave, twice

continuously differentiable, and strictly increasing. Let vs be the seller’s valuation for the

item, assumingu(0) = s(vs) = 0 andu′(0) = s′(vs) = 1.

The following theorem defines the bidders’ unique Bayesian Nash equilibrium (see

Figure 3.1):

Theorem 3.1 A buy-price English auction has a unique Bayesian Nash equilibrium deter-

mined by constants̃v and v̂ and functiont, b < ṽ ≤ v̂ ≤ v, such that all bidders with

valuationv have the following strategies:

• Use the traditional strategy ifv < b.

• Use the threshold strategy with a threshold pricet(v, b) ∈ (r, b] if b ≤ v < ṽ, where

t(v, b) is the threshold function defined by the differential equation

u(v − t(v, b))

u(v − b)
− 1 +

Fn−1′(v)

∂1(Fn−1 ◦ t)(v, b)
= 0, ∂1t(b, b) = −1, t(b, b) = b

• Use the conditional strategy if̃v ≤ v < v̂.

• Use the unconditional strategy if̂v ≤ v.

All bidders withv ≥ b follow the threshold strategy, i.e.,̃v = v̂ = v, if and only if

lim
v→v

t(v, b) ≥ r.

PROOF. We need to obtain the necessary and sufficient conditions for t, ṽ, andv̂ to deter-

mine a symmetric Bayesian Nash Equilibrium. First we assumet, ṽ, andv̂ determine a pure

strategy equilibrium. Under this assumption we calculate bidders’ expected profits corre-

sponding to the different strategies, provet(v, b) is both strictly decreasing and continuous

in v whenb ≤ v < ṽ, and show how to computet(v, b). We then prove such at(v, b)
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Figure 3.1: Bidders in a buy-price English auction follow one of the four equilibrium strate-
gies dependent on their valuations.

indeed corresponds to a unique symmetric Bayesian Nash Equilibrium. Further, we prove

the existence of unique reference pointsṽ andv̂ and show how to compute them.

Since we are concerned with strategies for a bidder withv ≥ b, let us first calculate

such a bidder’s expected profit under the three different strategies:

1. Under the unconditional strategy:

A bidder using the unconditional strategy competes only with other bidders using the same

strategy. The probability that a bidder uses the unconditional strategy is1 − F (v̂), and

the probability that there are exactlyk − 1 other bidders (1 ≤ k ≤ n) who also use the

unconditional strategy is
(

n−1
k−1

)

(1 − F (v̂))k−1Fn−k(v̂). Hence, an unconditional bidder’s

expected profit, denoted byΠu(v), is

Πu(v) =

n
∑

k=1

(

n− 1

k − 1

)

(1 − F (v̂))k−1Fn−k(v̂)
u(v − b)

k

=
1 − Fn(v̂)

n(1 − F (v̂))
u(v − b) =

u(v − b)

n

n−1
∑

k=0

F k(v̂)(3.1)

2. Under the conditional strategy:
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A bidder using the conditional strategy wins if 1) there are no unconditional bidders and 2)

he is chosen randomly among the conditional bidders who bid the buy price simultaneously.

A conditional bidder paysb if there is another valid bid and paysr if there are no valid bids.

Hence, a conditional bidder’s expected profit, denoted byΠc(v), is

Πc(v) =
n
∑

k=2

(

n− 1

k − 1

)

(F (v̂) − F (ṽ))k−1Fn−k(ṽ)
u(v − b)

k
+

u(v − b)(Fn−1(ṽ) − Fn−1(r)) + u(v − r)Fn−1(r)

=
u(v − b)

n

n−1
∑

k=0

F k(v̂)Fn−k−1(ṽ) + (u(v − r) − u(v − b))Fn−1(r)(3.2)

3. Under the threshold strategy:

A bidder with a threshold pricep wins and paysb if there are neither unconditional nor

conditional bidders and he is chosen randomly among the threshold bidders who bid the buy

price simultaneously once the current high bid reachesp. Alternatively, he wins and pays

the second-highest bid (or the reserve if he is the only bidder with a valuation at or above

the reserve) if all other bidders have valuations belowp. LetGn−1(p) be the probability that

a bidder with a threshold pricep exercises the buy price and wins the auction5. A threshold

bidder’s expected profit, denoted byΠt(v, p), is

(3.3) Πt(v, p) = u(v − b)Gn−1(p) +

∫ p

r

u(v − x) dFn−1(x) + u(v − r)Fn−1(r)

We now establish two properties of the threshold functiont(v, b). To simplify the notations

in the following proofs, we definet for the full range of bidder valuations:t(v, b) = b when

v ≤ b, t(v, b) = r whenṽ ≤ v < v̂, andt(v, b) = v < r whenv̂ ≤ v.

Proposition 3.2 t(v, b) is strictly decreasing inv for b ≤ v < ṽ.

5If multiple bidders use the same threshold pricep, the winner is selected randomly among them. This will
be reflected inGn−1(p). Later we prove that in equilibrium there is zero probability that multiple threshold
bidders share the same threshold price.
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PROOF. See Section 3.5.1.

Proposition 3.2 implies that for any threshold pricep, r < p < b, there is at most one bidder

valuation corresponding to the equilibrium threshold price p; i.e., there is at most onev s.t.

t(v, b) = p. Thus in equilibrium it is impossible for two threshold bidders to have the same

threshold price. This allows us to expressGn−1(p), which denotes the probability that a

bidder with threshold pricep uses the buy price and wins. It occurs if no one else has a

threshold price lower thanp, excluding the case where the bidder wins without using the

buy price because everyone else has a valuation less thanp:

Gn−1(p) =
(

1 − Prob(t(v, b) ≤ p)
)n−1

− Fn−1(p)

DefiningT (p) = Prob(t(v, b) ≤ p), we can writeGn−1(p) as

(3.4) Gn−1(p) = (1 − T (p))n−1 − Fn−1(p)

Note thatt(v, b) strictly decreasing forb ≤ v < ṽ implies thatT (p) is continuous and

strictly increasing forr < p ≤ b, which in turn implies thatGn−1(p) is continuous and

strictly decreasing forr < p ≤ b. This can be used to prove the following proposition:

Proposition 3.3 t(v, b) is continuous inv for b ≤ v < ṽ.

PROOF. See Section 3.5.2.

Note that the equilibrium threshold function cannot continuously drop to the re-

serve price if there is a positive probability that there areconditional bidders. This is be-

cause a bidder with a threshold slightly above the reserve can switch to the conditional

strategy, thus increasing his chance of winning by more thana fixed positive amount while

his payment conditional on winning would hardly change.
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Using the above two propositions we can now have the following proposition6.

Proposition 3.4 Any threshold price functiont(v, b) corresponding to an equilibrium sat-

isfies the following differential equation:

u(v − t(v, b))

u(v − b)
− 1 +

Fn−1′(v)

∂1(Fn−1 ◦ t)(v, b)
= 0 if b ≤ v < ṽ(3.5)

∂1t(b, b) = −1, t(b, b) = b

PROOF. In equilibrium, when all other bidders follow the threshold strategy determined

by t, the optimal threshold price of a bidder with valuationv (b ≤ v < ṽ) is t(v, b),

i.e., p∗ = t(v, b) maximizesΠt(v, p). Differentiating a threshold bidder’s expected utility

function (3.3) inp, we get

(3.6)
∂Πt(v, p)

∂p
= u(v − b)G′

n−1(p) + u(v − p)Fn−1′(p)

DifferentiatingGn−1(p) gives

G′
n−1(p) = −(n− 1)(1 − T (p))n−2T ′(p) − Fn−1′(p)

Becauset(v, b) is strictly decreasing and continuous inv when b ≤ v < ṽ, its inverse

function in the first variable, denoted byw(·, b), exists:

t(w(p, b), b) = p

Usingw, T (p) can be expressed as

T (p) = 1 − F (w(p, b))

and we have

T ′(p) = −
f(w(p, b))

∂1t(w(p, b), b)

6In the interest of simplicity, we assume thatt is continuously differentiable in both variablesv andb so
long as it is abover.
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ReplacingT (p) andT ′(p) in G′
n−1(p), we get

G′
n−1(p) = (n− 1)Fn−2(w(p, b))

f(w(p, b))

∂1t(w(p, b), b)
− Fn−1′(p)

=
Fn−1′(w(p, b))

∂1t(w(p, b), b)
− Fn−1′(p)

Therefore, we have

∂Πt(v, p)

∂p
= u(v − p)Fn−1′(p) + u(v − b)

(

Fn−1′(w(p, b))

∂1t(w(p, b), b)
− Fn−1′(p)

)

Forv > b, dividing the above equation byu(v− b)Fn−1′(p) > 0 preserves its sign, and we

get

(3.7)
u(v − p)

u(v − b)
− 1 +

Fn−1′(w(p, b))

∂1(Fn−1 ◦ t)(w(p, b), b)

Whent is the equilibrium threshold function, i.e.,p∗ = t(v, b) andw(p∗, b) = v, (3.7) is

zero:
u(v − t(v, b))

u(v − b)
− 1 +

Fn−1′(v)

∂1(Fn−1 ◦ t)(v, b)
= 0

Forv = b, t(v, b) is continuous inv andt(b, b) = limvցbt(v, b) = b. By our assumption,t

is continuously differentiable. Applying the L’Hospital’s rule, we have

lim
vցb

u(v − t(v, b))

u(v − b)
=
u′(0)(1 − ∂1t(b, b))

u′(0)
= 1 − ∂1t(b, b)

We can use this to take the limit in (3.5) asv ց b to obtain∂1t(b, b) = ±1. Sincet is

decreasing,∂1t(b, b) = −1 must hold.

Equation (3.5) is an ordinary differential equation fort(·, b) with the boundary

condition t(b, b) = b. The equation always has a unique solution oft(v, b). Although

we cannot express the general solution explicitly, biddersin practice can apply (3.5) to

calculate their optimal threshold prices once the characteristics of an auction (e.g., bidders’

value distribution, utility functions, and the seller’s buy price) become known. We will
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demonstrate the use of (3.5) when a bidder has Constant Absolute Risk Aversion (CARA)

utility [35].

Also using (3.5) we can further verify Proposition 3.2. Since u(v − t(v, b)) >

u(v − b), from (3.5) we get

Fn−1′(v)

Fn−1′(t(v, b))∂1t(v, b)
= 1 −

u(v − t(v, b))

u(v − b)
< 0

which implies∂1t(v, b) < 0.

Now we prove that the threshold function defined by (3.5) is the best response

threshold value.

Proposition 3.5 Let t be the function defined by (3.5) andṽ > b satisfy that for allx < ṽ

that t(x, b) > r. If all other bidders with valuationsx, b ≤ x < ṽ, follow the threshold

strategyt(x, b), then the optimal threshold strategy of a bidder with valuation v, b ≤ v < ṽ,

is to uset(v, b) as his threshold price.

PROOF. To show thatt(v, b) = p∗ maximizes the expected profit of a bidder withv (b ≤

v < ṽ), it is enough to show that∂Πt(v,p)
∂p

is positive ifp < t(v, b) and is negative when

p > t(v, b). From the detailed proof in Section 3.5.3, we getΠt(v, p) strictly increasing for

all p ∈ (r, t(v, b)) and strictly decreasing forp ∈ (t(v, b), b). This proves that, as long as

all other bidders use the threshold strategy,p∗ = t(v, b) maximizesΠt(v, p) for a givenv,

b ≤ v < ṽ; that is, the optimal threshold price of a bidder with valuation v is t(v, b).

Corollary 3.6 If t(v, b) defined by (3.5) satisfies

lim
v→v

t(v, b) ≥ r

then it is an equilibrium that all bidders with valuationv ≥ b use the threshold strategy

with t(v, b) as their threshold price.
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PROOF. Proposition 3.5 with̃v = v̂ = v shows that a bidder cannot improve his profit

by using a different threshold strategy. We now show that he cannot improve his profit by

switching to either the conditional or the unconditional strategies. To do so, it is sufficient

to show

Πt(v, t(v, b)) > u(v − r)Fn−1(r) + u(v − b)(1 − Fn−1(r)) > u(v − b)

The middle of the inequality above is the bidder’s maximum possible profit using the con-

ditional strategy: a conditional bidder reaches his maximum possible expected profit when

he paysr if everyone else has a valuation belowr and paysb otherwise. It is higher than

the maximum profit possible using the unconditional strategy, which isu(v − b).

When all other bidders follow the threshold strategy, by Proposition 3.5, we have

Πt(v, t(v, b)) > lim
p→r

Πt(v, p)

and using (3.3) andGn−1(p) = Fn−1(ṽ)−Fn−1(p), we havelim
p→r

Πt(v, p) = u(v−b)(1−

Fn−1(r)) + u(v − r)Fn−1(r).

Corollary 3.7 If t(v, b) defined by (3.5) satisfies

lim
v→v

t(v, b) ≥ r

then the bidder with the highest valuation wins. When the buyers and seller are risk-neutral,

the buyers’ and the seller’s expected profits are the same as in a standard English auction.

PROOF. By Corollary 3.6, iflimv→v t(v, b) ≥ r, all bidders follow the threshold strategy

with threshold prices strictly decreasing with their valuations. Hence the bidder with the

highest valuation reaches his threshold price first and winsthe auction. By the revenue

equivalence theorem [36, 37], a buy-price English auction yields the same expected rev-

enues as a standard English auction when the buyers and the seller are risk-neutral.
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Corollary 3.6 shows that whenlimv→v t(v, b) ≥ r, it is an equilibrium for all

bidders withv ≥ b to follow the threshold strategy, i.e.,̃v = v̂ = v. Now we need to

proveṽ < v whenlimv→v t(v, b) < r.

We can calculate the equilibrium̂v and ṽ using (3.1) and (3.2). First, find the

equation that giveŝv for a givenṽ.

One of the following must be true:Πu(v) ≥ Πc(v) for all v ≥ ṽ (only use the

unconditional strategy),Πu(v) ≤ Πc(v) for all v ≥ ṽ (only use the conditional strategy),

or v̂ satisfiesΠu(v̂) = Πc(v̂) (use unconditional or conditional strategy respectively in

different value ranges). The last case leads to

(3.8)
n−1
∑

k=0

F k(v̂)(1 − Fn−k−1(ṽ)) = n
(u(v̂ − r)

u(v̂ − b)
− 1
)

Fn−1(r)

For a givenṽ, the right-hand side above is strictly decreasing inv̂, while the left-hand side

is strictly increasing. Therefore, there is either one unique v̂ or no v̂ solution (̂v > ṽ). If

there is nôv solution, then for allv ≥ ṽ eitherΠu(v) ≤ Πc(v) (i.e., v̂ = v) satisfying

(3.9)
n−1
∑

k=0

(1 − Fn−k−1(ṽ)) ≤ n
(u(v − r)

u(v − b)
− 1
)

Fn−1(r)

or Πu(v) ≥ Πc(v) (i.e., v̂ = ṽ) satisfying

(3.10)
n−1
∑

k=0

F k(ṽ)(1 − Fn−k−1(ṽ)) ≥ n
(u(ṽ − r)

u(ṽ − b)
− 1
)

Fn−1(r)

DefineΠd(v) = max{Πc(v),Πu(v)}. ṽ is the valuation limit where bidders switch

from the threshold strategy either to the conditional or theunconditional strategies; thus,

Πt(ṽ, t(ṽ, b)) = Πd(ṽ). Since both sides are continuous, in order to demonstrate that there

is a solution to this equation, it is sufficient to show thatΠt(ṽ, t(ṽ, b)) is greater for̃v → b,
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Figure 3.2: The relationship among the slopes of the three expected bidder profit functions
under the threshold, conditional, and unconditional strategies guarantees the existence of
uniqueṽ and v̂. For simplicity, we depict the functions as linear. In reality, they are non-
linear.

butΠd(ṽ) is greater wheñv is large, s.t.,t(ṽ, b) → r. First consider the case whereṽ → b:

lim
ṽցb

Πu(ṽ) = 0

lim
ṽցb

Πc(ṽ) = (b− r)Fn−1(r)

lim
ṽցb

Πt(ṽ, t(ṽ, b)) =

∫ b

r

u(b− x) dFn−1(x) + (b− r)Fn−1(r)

which shows that for̃v → b, Πt(ṽ, t(ṽ, b)) > Πd(ṽ) holds.

Let vx satisfyt(vx, b) = r. Note thatvx < v exists here becauselimv→v t(v, b) <

r. We have

lim
ṽ→vx

Πt(ṽ, t(ṽ, b)) = (u(vx − r) − u(vx − b))Fn−1(r) + u(vx − b)Fn−1(vx)

≤ Πc(vx) ≤ Πd(vx)

Therefore, there exists ãv ∈ (b, vx] satisfyingΠt(ṽ, t(ṽ, b)) = Πd(ṽ) andṽ < v.
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To show that̃v andv̂, together witht, correspond to an equilibrium, we will use the

following inequality (see Figure 3.2), which follows easily from equations (3.1–3.3) and

the concavity ofu:

(3.11) Π′
u(v) ≥ Π′

c(v) ≥
∂Πt(v, p)

∂v
for all v > b andr < p < b

Intuitively we can think that a bidder’s chance of winning decreases in the order of using

the unconditional, conditional, and threshold strategies. The marginal expected profit from

the unconditional strategy is the highest followed by the conditional and then the threshold

strategies. In addition, a bidder’s utility conditional onwinning the auction is the smallest

in the unconditional strategy, followed by the conditionaland the threshold strategies. Thus

the above inequality holds.

Inequality (3.11) implies that for allp, Πt(v, p)−Πd(v) is non-increasing inv. For

anyv < ṽ,

Πt(v, t(v, b)) − Πd(v) > Πt(v, t(ṽ, b)) − Πd(v) ≥ Πt(ṽ, t(ṽ, b)) − Πd(ṽ) = 0

which implies that bidders with valuation below̃v cannot improve their expected utility by

switching to the conditional or unconditional strategies.For anyv > ṽ and for anyp,

Πt(v, p) − Πd(v) ≤ Πt(ṽ, p) − Πd(ṽ) ≤ Πt(ṽ, t(ṽ, b)) − Πd(ṽ) = 0

which implies that bidders with valuation aboveṽ, following the better of the conditional

and unconditional strategies, cannot gain by switching to athreshold strategy.

Inequality (3.11) also implies thatΠu(v) − Πc(v) is non-decreasing. Therefore, if

Πc(v̂) = Πu(v̂), then for allv ∈ [ṽ, v̂) bidders prefer the conditional strategy and, for all

v ≥ v̂, bidders prefer the unconditional strategy. If there is nov̂ that satisfiesΠu(v̂) =

Πc(v̂), then either (3.9) or (3.10) holds (i.e., one of the two strategies is always strictly

better than the other).

Now we have shown thatt, ṽ, andv̂ indeed determine an equilibrium.
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We can prove that̃v andv̂ are unique and the equilibrium described in Theorem 3.1 is the

only pure strategy symmetric equilibrium of a buy-price English auction. The proof is not

difficult and uses similar techniques as in the proof of Theorem 3.1. Since the proof does

not provide any more economical insights, we choose to omit it in this paper.

3.2.3 Threshold Prices and the Bidders’ Degrees of Risk Aversion

Now we examine the relationship between a bidder’s threshold price and his absolute level

of risk aversion. Assuming that the bidder’s valuation is unchanged, the following theorem

proves that the more risk-averse a bidder, the lower his threshold price. In other words, the

more risk-averse a bidder is, the sooner he would use the buy price in order to avoid the risk

that someone else may use it first.

Theorem 3.8 Letu1, u2 be concave or linear utility functions,t1, t2 be the corresponding

threshold-price functions, anda1 = −u′′1/u
′
1, a2 = −u′′2/u

′
2 be the absolute level of risk

aversion. Ifa1(x) ≤ a2(x) for all x ≥ 0, thent1(v, b) ≥ t2(v, b) for all v ≥ b.

PROOF. Prove by contradiction: assume that for allx ≥ 0, a1(x) ≤ a2(x), but there exists

β > b such thatt1(β, b) < t2(β, b). Let α = max{v : v < β ∧ t1(v, b) = t2(v, b)}. α

exists because the set over which we take the maximum is closed, bounded from above, and

non-empty (e.g., includesb). Then for allv, α < v ≤ β, t1(v, b) < t2(v, b).

Using Lemma 3.14 from Section 3.5.4, the following inequalities hold:

u1(v − t1(v, b))

u1(v − b)
≥
u2(v − t1(v, b))

u2(v − b)
>
u2(v − t2(v, b))

u2(v − b)

This, combined with (3.5), implies∂1(F
n−1◦t1)(v, b) > ∂1(F

n−1◦t2)(v, b), which means

that Fn−1(t1(v, b)) − Fn−1(t2(v, b)) is strictly increasing inv for α < v ≤ β. Since

Fn−1(t1(α, b)) = Fn−1(t2(α, b)), Fn−1(t1(v, b)) > Fn−1(t2(v, b)) is only possible if

t1(v, b) > t2(v, b) for all α < v ≤ β, which is a contradiction.
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3.3 The Expected Social Welfare

3.3.1 Bidders’ Choice: Buy-price or Standard English Auction?

When a bidder needs to choose between a buy-price and a standard English auction, which

one should he prefer? To decide, we need to compare his expected profits. For a bidder

with a valuation belowb, the two auctions are equivalent because his equilibrium strategy

remains the same. For a bidder with valuation at or aboveb but belowṽ, he follows the

same strategy as in the standard auction as long as the second-highest bidder valuation is

below the threshold price. Otherwise, his expected extra gain from attending a buy-price

English auction, instead of a standard one, is

(3.12)
∫ v

t(v,b)
(u(v − b) − u(v − x)) dFn−1(x)

Next, we calculate the bidder’s gains when he is risk-averseor neutral, respectively. Sup-

pose the bidder has CARA utilityua(x) = (1− e−ax)/a, wherea > 0 is the absolute level

of risk aversion. If the bidder is risk-neutral,a = 0, u0(x) = lima→0 ua(x) = x7. The

CARA utility satisfies the following

ua(x) − ua(y)

u′a(y)
= ua(x− y) for all a ≥ 0, x, y ∈ R

ua(−x) = −
ua(x)

u′a(x)
for all a ≥ 0, x ∈ R

Applying them in (3.5), we get

ua(b− t(v, b))
(

Fn−1 ◦ t(·, b)
)′

(v) = ua(b− v)Fn−1′(v)

Solving it with the boundary conditiont(b, b) = b yields

∫ t(v,b)

b

ua(b− x) dFn−1(x) =

∫ v

b

ua(b− x) dFn−1(x)

7Subsequently, whenever we mention CARA utility we also include the linear utility function.
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(3.13)
∫ v

t(v,b)
ua(b− x) dFn−1(x) = 0

Using equation (3.13), a bidder with CARA utility can calculate his threshold pricet(v, b).

Rewriting (3.12) and using (3.13), we get

∫ v

t(v,b)
(ua(v − b) − ua(v − x)) dFn−1(x) = −u′a(v − b)

∫ v

t(v,b)
ua(b− x) dFn−1(x) = 0

Hence, a bidder with CARA utility and a valuationv, b ≤ v < ṽ gains no extra expected

profit from attending a buy-price English auction instead ofa standard one.

However, bidders with valuation abovẽv are no longer indifferent between a buy-

price and a standard English auctions. Most bidders will be better off in a buy-price English

auction. If the buy price is low and̂v ≤ v, however, then some bidders with very high

valuations will prefer the standard English auction where they do not have to participate in

the random draw with other unconditional bidders; thus, their chance of winning is higher.

We have not calculated the exact conditions under which a bidder with a high valuation

prefers a standard English auction, but we conjecture that this could not happen with most

value distributions unless the buy price is set to unreasonably low levels.

3.3.2 Seller’s Choice: Buy-price or Standard English Auction?

3.3.2.1 Risk-neutral Sellers

Definetv = limv→v t(v, b). We have seen that whentv ≥ r is in equilibrium, all bidders

follow the threshold strategy with a strictly decreasingt, ensuring that the bidder with the

highest valuation wins. The revenue equivalence theorem, which is true only when both the

seller and the bidders are risk-neutral, implies that a risk-neutral seller’s expected profit in

a buy-price auction is the same as that in a standard one. On the other hand, whentv ≥ r

does not hold, bidders with valuations aboveṽ follow different strategies and the auction

no longer guarantees that the bidder with the highest valuation wins.
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Figure 3.3: The buy-price English auction is efficient ifb ≥
∫ v

r
x dFn−1(x)

1−Fn−1(r) .

When bidders have CARA utility andtv ≥ r, we can derive the following from

equation (3.13)

0 =

∫ v

tv

ua(b− x) dFn−1(x) ≤

∫ v

r

ua(b− x) dFn−1(x)

which implies

(3.14) lim
v→v

t(v, b) = tv ≥ r ⇐⇒

∫ v

r

ua(b− x) dFn−1(x) ≥ 0

When buyers are risk-neutral, i.e.,a = 0 andua(b − x) = b− x, the condition of

(3.14) is equivalent to
∫ v

r

bdFn−1(x) ≥

∫ v

r

xdFn−1(x)

which can be rewritten as

(3.15) b ≥

∫ v

r

x
dFn−1(x)

1 − Fn−1(r)

This result can be summarized in the following theorem (see Figure 3.3):

Theorem 3.9 In a buy-price English auction, if both the seller and buyersare risk-neutral

and the buy price is set at least as high as the expected maximum valuation among(n− 1)
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buyers on the condition that at least one of the(n − 1) buyers has a valuation at or above

the reserve price, then the seller’s expected profit is the same as that in a standard English

auction, and the buy-price English auction is efficient.

If the second-highest bidder valuation is below the reserveprice, the winning bidder

would only pay the reserve in both the standard and buy-priceauctions. Therefore, to

compare the two auctions, it is sufficient to consider the expected seller revenues conditional

on having at least two bidders with valuations no lower than the reserve. For the following

discussion we assume this condition.

How high should a buy price be? We know that the buy price is themaximum

revenue the seller gets from a buy-price auction, thus the expected seller revenue in such an

auction is always less than the buy price. This implies that for the seller to have the same

expected revenue from the buy-price and standard auctions,she has to set the buy price

higher than her expected revenue from a standard auction (i.e., the expected second-highest

bidder valuation).

The criterion on how to choose a good buy price in Theorem 3.9 follows the above

intuition. The maximum valuation of arbitrary(n − 1) bidders is usually higher than the

second-highest valuation. They are equal only when the chosen (n − 1) bidders happen

to be the bidders with the lowest(n − 1) valuations, but in all other cases the maximum

valuation of arbitrary(n − 1) bidders is equvalent to the maximum valuation among all

bidders.

Another intuitive way to obtain a lower bound of a well-chosen buy price that guar-

antees the revenue equivalence between buy-price and standard auctions is to study the

expected payment of the bidder with the highest typev. In the standard auction, thev-

type bidder’s expected payment is the expected maximum valuation of all other bidders,

which, if the revenue equvalence holds, is also his expectedpayment in the buy-price auc-
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tion. Since his maximum payment is the buy price, the buy price must be at least as high as

the expected maximum valuation of all other bidders, which is exactly what is depicted in

Inequality (3.15).

Inequality (3.15) is important because it helps the seller to choose an appropriate

buy price. Example 3.10 demonstrates how to calculate the lower bound for the buy price.

Example 3.10 In an auction where there are two risk-neutral bidders with valuation drawn

from the uniform[0, 1] distribution and the seller’s valuation is0, the optimal reserve price

is 0.5 and the lowest buy price that satisfies the revenue equivalence is0.75.

In this example,F (x) = x andf(x) = 1 for x ∈ [0, 1]. The optimal reserve price

satisfiesr = (1 − F (r))/f(r) = 1 − r, thusr = 0.5. From inequality (3.15) we get

b ≥

∫ v

r

x
dFn−1(x)

1 − Fn−1(r)
=

∫ 1

0.5
x

dx

1 − 0.5
= 12 − 0.52 = 0.75

Note that this lower bound of the buy price only applies to auctions with two bidders. As

the number of bidders increases, the buy price should also increase in order to ensure the

revenue equivalence.

The same lower bound can also derived from (3.13):

0 =

∫ v

t(v,b)
ua(b− x) dFn−1(x) =

∫ v

t(v,b)
(b− x) dx = (v − t(v, b))

2b − v − t(v, b)

2

which implies that the threshold functiont(v, b) = 2b − v. v can be at most1, so the

condition for the threshold function staying above the reserve is t(1, b) = 2b − 1 ≥ r =

0.5 =⇒ b ≥ 0.75. 0.75 is also the expected maximum valuation of one (i.e.,n−1) bidder

conditional on his valuation (the valuation of one out ofn − 1 = 1) is at least0.5. Such a

bidder has a uniform[0.5, 1] valuation distribution with an expected valuation of0.75.

We can also characterize the expected profit of a risk-neutral seller facing risk-

averse buyers in the following theorem:
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Theorem 3.11 In a buy-price English auction, if the seller is risk-neutral, the buyers are

risk-averse, and the buy price is set at least as high as the expected maximum valuation

among(n − 1) buyers on the condition that at least one of the(n − 1) buyers has a valu-

ation at or above the reserve price, then the seller’s expected profit is higher than that in a

standard English auction.

PROOF. Theorem 3.8 says that the more risk-averse the buyers are, the lower their threshold

prices. This increases the seller’s expected profit becausemore buyers will pay the buy

price instead of the second-highest bidder valuation. But in a standard auction, the seller’s

expected profit does not change with the buyers’ levels of risk aversion, as buyers bid up to

their valuations regardless. Therefore, when buyers are risk-averse, a risk-neutral seller is

better off in a buy-price English auction.

3.3.2.2 Risk-averse Sellers

Let us now calculate the expected profit of a risk-averse seller with risk-neutral buyers.

The calculation presented below is similar to that of Riley and Samuelson [37] except that

the seller’s utility functions(x), wherex denotes the sale price, is more general because

the seller under analysis can be either risk-neutral or risk-averse:s(x) = x if the seller is

risk-neutral ands(x) is strictly concave if the seller is risk-averse.

At the equilibrium, the seller’s expected profit from a bidder with a valuation below

b is the same as in a standard auction. It is given by the equation (8b) in Riley and Samuelson

[37]

P0(v) = s(r)Fn−1(r) +

∫ v

r

s(x) dFn−1(x) = s(v)Fn−1(v) −

∫ v

r

s′(x)Fn−1(x) dx

The seller’s expected profit from a bidder with a valuationv ∈ [b, ṽ) is

P (v, b) = P0(t) + s(b)(Fn−1(v) − Fn−1(t))
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Hence, the seller’s overall expected profit from alln bidders, denoted byΠs(v, b), is:

Πs(v, b) = n
(

∫ b

r

P0(v) dF (v) +

∫ ṽ

b

P (v, b) dF (v)
)

+(3.16)

b(1 − Fn(ṽ)) − n(b− r)Fn−1(r)(F (v̂) − F (ṽ))

Since we can regard no buy price in a standard auction as having a very large buy price, i.e.,

b → ∞, proving that a risk-averse seller is better off in a buy-price English auction with

risk-neutral buyers is equivalent to showing that theb-derivative ofΠs(v, b) is negative

when (3.15) holds. Theb-derivative ofΠs(v, b), whenṽ = v̂ = v, is

∂2Πs(v, b) = n

∫ v

b

∂2P (v, b) dF (v)

= n

∫ v

b

[

(s(t) − s(b))∂2(F
n−1 ◦ t)(v, b) +

s′(b)(Fn−1(v) − Fn−1(t))
]

dF (v)

Differentiating (3.13) byb with a = 0, i.e.,ua(x) = x, we get

(3.17) Fn−1(v) − Fn−1(t) = (b− t)
(

∂2(F
n−1 ◦ t)

)

(v, b)

Applying (3.17) ands(b) − s(t) ≥ s′(b)(b − t) due to the concavity ofs, we get

∂2Πs(v, b) ≤ 0.

The inequality shows that as long as (3.15) holds – i.e., the buy price is set high enough

that no one uses a conditional or unconditional strategy–a risk-averse seller is strictly better

off in a buy-price English auction than in a standard one whenbuyers are risk-neutral. The

equality holds if and only if the seller is risk-neutral, implying that the seller’s expected

profits from a buy price is the same as in a standard auction. Moreover, risk-averse buyers

further increase the seller’s expected profit. Hence, the following theorem holds:

Theorem 3.12 In a buy-price English auction, if either the seller or the buyers are risk-

averse and the buy price is set at least as high as the expectedmaximum valuation among
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(n − 1) buyers on the condition that at least one of the(n − 1) buyers has a valuation

at or above the reserve price, then the seller’s expected profit is higher than in a standard

English auction.

Therefore, we can conclude that regardless of whether the seller is risk-neutral or

risk-averse, she cannot lose by utilizing buy prices in English auctions.

3.4 Concluding Remarks

This paper has analyzed buy-price English auctions of an indivisible good in the general

setting ofn bidders with continuous, independently distributed, and private valuations. We

have proved that in equilibrium unique reference pointsṽ and v̂ exist (̃v ≤ v̂, with both

above the buy price) so that a bidder with a valuation betweenthe buy price and̃v bids

the buy price when the current high bid reaches a threshold price (i.e., the competition

among bidders is heated and has reached a level which makes such a bidder unwilling to

risk waiting further and thus bids the buy price), a bidder with a valuation betweeñv and

v̂ bids the buy price on the condition that there already existsa valid bid above or equal to

the reserve (i.e., at least one competing bidder exists), and a bidder with a valuation at or

abovev̂ bids the buy price unconditionally (i.e., regardless of whether there is competition

or not).

We have proved that the threshold bidders’ equilibrium threshold prices can be

calculated using the buy price, bidders’ utility functions, and their value distribution. These

threshold prices are between the reserve and the buy prices and strictly decreasing with

valuations. In other words, the higher a threshold bidder’svaluation, the lower his threshold

price.

We have also shown that if the buy price is set at or above a lower bound, then

all bidders with valuations above the buy price are threshold bidders; that is, there are no
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conditional or unconditional bidders. Since the thresholdprices are strictly decreasing with

the bidders’ valuations, the bidder with the highest valuation will reach his threshold price

first, and thus the auction guarantees that the highest bidder wins and the equilibrium yields

full efficiency. In addition, the more risk-averse a threshold bidder, the lower his threshold

price. In other words, a more risk-averse bidder tends to bidthe buy price earlier, which

helps to explain why the seller can gain higher expected profit from risk-averse buyers than

from risk-neutral buyers.

Clearly, the buy-price option can reduce a buyer’s risk: bidding the buy price, a

buyer can obtain the item at a fixed price, and he thus no longerhas to worry about losing

the auction to a bidder with a higher valuation. Because of this observation one may expect

that risk-averse buyers are better off in buy-price Englishauctions, but this is not true. To

reduce the risk of losing the auction, risk-averse buyers bid the buy price more often than

risk-neutral bidders. They may bid the buy price even in cases where there are no other

bidders with valuation above the buy price, and therefore, pay more than they would have

in a standard English auction. In fact, we have proved that when buyers are risk-neutral

or uniformly risk-averse, and when the buy price is properlyset above a lower bound, the

buyers’ expected utility in a buy-price English auction is the same as in a standard one.

If risk-averse buyers’ expected utility does not increase with the introduction of a

buy price even though their risks are reduced, then their expected payment must increase

to offset the positive utility of the reduced risk. This insight again explains why the seller’s

expected revenue is higher in the buy-price English auctionthan in a standard one when

bidders are risk-averse.

In addition to the seller’s higher or equivalent expected revenue, the seller’s risk is

also reduced in a buy-price English auction because the seller will often get the buy price

instead of some unpredictable payment either below or abovethe buy price. This obser-

vation in turn implies that a risk-averse seller always prefers a buy-price English auction
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because in it her expected revenue is not lower than that in a standard one when the buy

price is properly set and, at the same time, her risk is reduced.

The above results do not follow in cases with temporary and limited buy prices,

as neither auction can guarantee that the bidder with the highest valuation wins when all

agents are risk-neutral. In an English auction with a temporary buy price, bidders have to

decide whether or not to use the buy price without observing any bid, and, therefore, their

best symmetric strategy is to find a valuation level above which they unconditionally exer-

cise the buy price. This leads to inefficient outcomes reducing the seller’s expected profit

[38]. Similarly, an English auction with a limited buy priceis also inefficient. Although

the temporary and limited buy prices can increase the socialwelfare when players are risk-

averse [31, 39], they lower the expected social welfare whenplayers are risk-neutral. Thus

temporary and limited buy-price English auctions are generally inferior to the ones with

permanent buy prices. This result implies that the permanent buy-price auctions offered by

Yahoo!, uBid, and Amazon are, in theory, more beneficial to all agents than the temporary

buy-price auctions, like those offered by eBay, or the limited buy-price auctions, like those

offered by labx, especially for unique and used goods where buyers have private valuations

and face relatively high risks. While the positive network externality has contributed sig-

nificantly to the popularity of eBay, features in Yahoo!, uBid, and Amazon auctions also

have their own competitive advantages8. For practice, we recommend that auction houses

choose appropriate policies with respect to buy prices, conduct market research on the play-

ers’ degrees of risk aversion in different markets, and suggest strategies to auction sellers

how to use buy prices for additional revenue.

8In addition to the good policy of utilizing buy prices, Yahoo!, uBid, and Amazon have some other advanced
features. For instance, at the time when this paper is written, Yahoo! and uBid authenticate buyers more
rigorously than eBay by requiring valid credit card information for registration. Yahoo! even asks for two
passwords for the purpose of authentication, which reducesthe number of non-paying winners and the fraud of
shill bidding [40]. Yahoo! also allows a seller to specify the automatic extension of an auction if a bid is made
within the last five minutes of the auction, and this helps to prevent last-minute bidding [41]. Moreover, Yahoo!
auctions charge relatively low intermediation fees.
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Relaxing the assumptions of the revenue equivalence theorem [36, 37] leads to dif-

ferences among the English, Dutch, sealed-bid first-Price,and sealed-bid second-price auc-

tion mechanisms[42]. Maskin and Riley [43] provide a detailed analysis of auctions with

risk-averse buyers. The most notable result related to our research is that when bidders are

risk-averse, first-price sealed-bid and Dutch auctions provide higher expected seller profit

than second-price auctions. Using a two-bidder two-type model, Budish and Takeyama

[34] conclude that a buy-price English auction can be superior even to the first-price sealed-

bid and Dutch auctions when bidders are risk-averse. It would be interesting to investigate

whether this result remains true in a general setting ofn bidder with arbitrary value distri-

bution.

Another extension of our model would consider the time factor. With the pace of

transactions getting faster and the Internet’s around-the-clock operations allowing random

arrival of traders, the temporal property of a trade becomesincreasingly important. We

suspect that delay-averse auction sellers and buyers are more likely to use buy prices than

delay-neutral or delay-taking buyers, and that the shortened auction cycles would increase

the market liquidity. Lucking-Reiley [44] mentioned that the use of a buy price is to “allow

buyers to buy an early end to the auction by submitting a sufficiently high bid.” Mathews

[32] modeled eBay’s temporary buy price auction with a time discount and showed that

when the seller and buyers are risk-neutral, even temporarybuy prices that are exercised

with positive probabilities are welcome, because buyers are willing to pay more to get

the item sooner and/or the seller is willing to give up some ofher expected profit to get

the payment sooner. In contrast to an analysis of eBay’s temporary buy price model with

uniform bidder distribution, we need a more general model toanalyze the temporal effect

of utilizing permanent buy prices in auctions with arbitrary bidder distribution.

Entry costs to auctions may also affect the comparison between buy-price and stan-

dard English auctions. Rothkopf and Harstad [42] note that when potential buyers expect

62



www.manaraa.com

strong competition for an item, they may not invest efforts to enter the auction because the

winner can only expect small profits. A buy price can guarantee a minimum profit for the

winner and, hence, may attract more bidders.

Another research direction is to study how the seller uses buy prices as signaling

devices. Too high a buy price may alienate buyers from bidding. Too low a buy price

may convey information on adverse quality. Ultimately, it might even be possible to embed

a Dutch auction within an English auction by allowing buy prices to decrease during the

auction.

While we have only modeled private value auctions, buy prices could also prove

beneficial in common value models. In a common value auction,the buy price is a strong

signal from the seller about the value of the item, which can help reduce the errors in the

bidders’ value estimates and thus may lower the “winner’s curse” effect, in turn increasing

the seller’s expected profit.

3.5 Detailed proofs

3.5.1 Proof of Proposition 3.2

PROPOSITION 3.2:t(v, b) is strictly decreasing inv whenb ≤ v < ṽ.

PROOF. We first prove thatt(v, b) is non-increasing inv for all v ≥ b. Prove by con-

tradiction: assumet(v, b) is increasing inv for all v ≥ b, that is, for somev0 < v1,

t0 = t(v0, b) < t1 = t(v1, b). Since we assume thatF is strictly increasing, every bidder

would have a unique valuation and there will not be random-draw cases. When the auction

clock reachest0, a bidder with a valuationv1 can either jump to the buy price immediately

for a guaranteedu(v1 − b) profit, or continue bidding and wait to jump att1. Since by our

assumptiont1 is this bidder’s equilibrium threshold price, jumping att1 should give him
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expected profit no less than jumping att0:

u(v1 − b)Gn−1(t1) +

∫ t1

t0

u(v1 − x) dFn−1(x) ≥ u(v1 − b)Gn−1(t0)

(3.18)
∫ t1

t0

u(v1 − x)
dFn−1(x)

Gn−1(t0)
≥ u(v1 − b)

(

1 −
Gn−1(t1)

Gn−1(t0)

)

On the other hand, for the buyer with valuationv0, jumping to the buy price att0 is at least

as good as continuing bidding and jumping att1:

u(v0 − b)Gn−1(t0) ≥ u(v0 − b)Gn−1(t1) +

∫ t1

t0

u(v0 − x) dFn−1(x)

(3.19) u(v0 − b)
(

1 −
Gn−1(t1)

Gn−1(t0)

)

≥

∫ t1

t0

u(v0 − x)
dFn−1(x)

Gn−1(t0)

Sinceu is concave,x ≤ b =⇒ u(v1 − x)− u(v0 − x) ≤ u(v1 − b)− u(v0 − b). Together

with (3.18), (3.19), we have

∫ t1

t0

dFn−1(x)

Gn−1(t0)
≥ 1 −

Gn−1(t1)

Gn−1(t0)

Gn−1(t0) −Gn−1(t1) ≤ Fn−1(t1) − Fn−1(t0)

Recall thatGn−1(t) is defined to be the probability that a bidder with thresholdt exercises

the buy price and wins the auction. Lowering the threshold from t1 to t0 increases the

chance of successfully using the buy price by at least the probability that there is another

bidder with a valuation betweent0 andt1, i.e.,

Gn−1(t0) −Gn−1(t1) ≥ Fn−1(t1) − Fn−1(t0)

HenceGn−1(t0) −Gn−1(t1) = Fn−1(t1) − Fn−1(t0), and (3.19) becomes

u(v0 − b)(Fn−1(t1) − Fn−1(t0)) ≥

∫ t1

t0

u(v0 − x) dFn−1(x)
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0 ≥

∫ t1

t0

(

u(v0 − x) − u(v0 − b)
)

dFn−1(x)

which impliesF (t0) = F (t1). SinceF is strictly increasing,t0 = t1 must hold, contradic-

tory to our assumption. Therefore, we have proved thatt(v, b) is non-increasing inv for all

v ≥ b.

Now we further prove thatt(v, b) is strictly decreasing whenb ≤ v < ṽ. Since

by definition t(ṽ, b) = r, proving t as strictly decreasing indicatest(v, b) > r whenb ≤

v < ṽ. Again, prove by contradiction: assume that fort0 > r and someb ≤ v0 < v1,

∀v(v0 ≤ v ≤ v1 =⇒ t(v, b) = t0), that is, all bidders with valuations betweenv0 and

v1 pool at the same threshold pricet0. This implies a positive probability that more than

one bidder with valuations betweenv0 andv1 would jump to the buy price simultaneously

when t0 is reached and the winner would be chosen randomly among them. But if one

of them decides to jump earlier (i.e., when the auction clockreachest0 − ε instead of

t0 for some arbitrarily smallε), he can avoid this random-draw gamble and increase his

chance of winning. By doing so, he can increase his expected profit and only suffer at

most ε additional loss. Clearly, ifε is small enough, he can be better off by jumping

earlier. Therefore, pooling cannot be an equilibrium. Thus, t(v, b) is strictly decreasing

whenb ≤ v < ṽ, i.e.,t(v, b) > r.

3.5.2 Proof of Proposition 3.3

PROPOSITION 3.3:t(v, b) is continuous inv whenb ≤ v < ṽ.

PROOF. We first provet(v, b) is right-continuous inv whenb ≤ v < ṽ, i.e., t(v, b) > r.

Let v0 ≥ b, t0 = t(v0, b), v > v0, andt+ = limvցv0 t(v, b). The monotonicity oft(v, b)

impliest+ ≤ t0. Sincet(v, b) is the equilibrium threshold, for the buyer with a valuationv,

jumping to the buy price when the auction clock reachest(v, b) ≤ t0 is at least as good as
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jumping att0:

u(v − b)Gn−1(t(v, b)) ≥ u(v − b)Gn−1(t0) +

∫ t0

t(v,b)
u(v − x) dFn−1(x)(3.20)

Recall thatG is continuous. Therefore, we can take the limit in (3.20) asv ց v0 to obtain

u(v0 − b) ≥ u(v0 − b)
Gn−1(t0)

Gn−1(t+)
+

∫ t0

t+

u(v0 − x)
dFn−1(x)

Gn−1(t+)

Sincet(v, b) is non-increasing inv and nowv ց v0, t(v, b) cannot take any value between

t+ and t0. t(v, b) is strictly decreasing when it is abover, thus whent+ > r we have

T (t+) = T (t0), which by equation (3.4) impliesGn−1(t0) −Gn−1(t+) = −(Fn−1(t0) −

Fn−1(t+)). Therefore,

0 ≥

∫ t0

t+

u(v0 − x)
dFn−1(x)

Gn−1(t+)
− u(v0 − b)

Fn−1(t0) − Fn−1(t+)

Gn−1(t+)

0 ≥

∫ t0

t+

(

u(v0 − x) − u(v0 − b)
) dFn−1(x)

Gn−1(t+)

Forx < b, u(v0 − x) − u(v0 − b) > 0 andt0 ≤ b, therefore ift0 > t+, the integral on the

right side would be strictly positive. Therefore, the aboveformula can only hold ift+ = t0.

This completes the proof of the right-continuity oft(v, b) with regard tov whent(v, b) > r.

Using similar arguments, we can prove the left-continuity of t.

Note that the continuity oft(v, b) in v is only true whent(v, b) > r; it is possible

thatt has discontinuity at some point wheret suddenly drops tor.

3.5.3 Proof of Proposition 3.5

PROPOSITION 3.5: Let t be the function defined by (3.5) and letṽ > b satisfy that for

all x < ṽ that t(x, b) > r. If all other bidders with valuationsx, b ≤ x < ṽ, follow the

threshold strategyt(x, b), then the optimal threshold strategy of a bidder with valuation v,

b ≤ v < ṽ, is to uset(v, b) as his threshold price.

For the proof we will need the following lemma:
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Lemma 3.13 For anyx > 0 andd > 0,
u(x+ d)

u(x)
is strictly decreasing inx.

PROOF. Letx < y.

u(x+ d)

u(x)
− 1 =

u(x+ d) − u(x)

u(x)
≥
u(y + d) − u(y)

u(x)
becauseu is concave

>
u(y + d) − u(y)

u(y)
becauseu is increasing

=
u(y + d)

u(y)
− 1 �

PROOF. To show thatt(v, b) = p∗ maximizes the expected profit of a bidder withb ≤ v <

ṽ, it is enough to show that (3.7), having the same sign as∂Πt(v,p)
∂p

, is positive ifp < t(v, b)

and negative whenp > t(v, b). Sincew(·, b) is the inverse oft(·, b), w(t(v, b), b) = v.

w(·, b) is strictly decreasing; therefore,w(p, b) < v if p > t(v, b) andw(p, b) > v if

p < t(v, b).

First consider the case whenp is in the range oft, i.e., v = w(p, b) < ṽ and

t(w(p, b), b) = p. Substitutev = w(p, b) into (3.5)

Fn−1′(w(p, b))

∂1(Fn−1 ◦ t)(w(p, b), b)
= 1 −

u(w(p, b) − t(w(p, b), b))

u(w(p, b) − b)
= 1 −

u(w(p, b) − p)

u(w(p, b) − b)

Substituting this into (3.7) we get

(3.21)
u(v − p)

u(v − b)
−
u(w(p, b) − p)

u(w(p, b) − b)

Applying Lemma 3.13 withd = b − p, x1 = v − b, andx2 = w(p, b) − b, we

can see that (3.21) is positive ifw(p, b) > v, i.e.,p < t(v, b), and negative ifw(p, b) < v,

i.e., p > t(v, b). This shows thatt(v, b) maximizes the expected profit from the threshold

strategy as long as the threshold is in the range oft. Sincet is continuously decreasing and

t(b, b) = b, the range oft(v, b) for b ≤ v < ṽ is an interval(t, b).
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Whenp is not in the range oft, i.e., r < p ≤ t and no other bidder will use a

threshold price below or equal top, using the threshold pricep a bidder can only lose to

conditional or unconditional bidders. Therefore,

Gn−1(p) = Fn−1(ṽ) − Fn−1(p)

Applying it in (3.6) we get

∂Πt(v, p)

∂p
= (u(v − p) − u(v − b))Fn−1′(p) > 0

which implies thatΠt(v, p) is strictly increasing for allp ∈ (r, t].

Combining this with the case in whichp ∈ [t, b), we getΠt(v, p) strictly increasing

for all p ∈ (r, t(v, b)) and strictly decreasing forp ∈ (t(v, b), b). This proves that, as long

as all other bidders use the threshold strategy,p∗ = t(v, b) maximizesΠt(v, p) for a given

v; that is, the optimal threshold price of a bidder with valuation v is t(v, b).

3.5.4 Comparing utility functions based on the level of riskaversion

Lemma 3.14 Letu1 : R
+ 7→ R

+, u2 : R
+ 7→ R

+ be twice differentiable utility functions,

u1(0) = u2(0) = 0, andu′1(x) > 0, u′2(x) > 0 for all x ≥ 0. Let a1 = −u′′1/u
′
1 and

a2 = −u′′2/u
′
2 be the absolute level of risk aversion. Ifa1(x) ≤ a2(x) for all x ≥ 0, then

the following inequality holds

∀x, y

(

0 < y < x =⇒
u1(x)

u1(y)
≥
u2(x)

u2(y)

)

When∃y (0 < y < x) such that the equality holds, there is a constantλ such thatu1(z) =

λu2(z) for all 0 ≤ z ≤ x.

PROOF. Letλ = u1(x)/u2(x). Part I: We want to prove that∀x, y, 0 < y < x

u1(x)

u2(x)
≥
u1(y)

u2(y)
⇐⇒ λ ≥

u1(y)

u2(y)
⇐⇒ λu2(y) − u1(y) ≥ 0
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Prove by contradiction: Suppose∃y
(

0 < y < x ∧ λu2(y) − u1(y) < 0
)

, that is,∃y
(

0 <

y < x ∧
∫ y

0 (λu′2(v) − u′1(v)) dv < 0
)

. Together withu1(0) = u2(0) = 0, it implies that

there is az, 0 < z < y, s.t.,λu′2(z) − u′1(z) < 0, that is,u′1(z)/u
′
2(z) > λ.

Note thata1 = −u′′1/u
′
1 = (− lnu′1)

′ anda2 = −u′′2/u
′
2 = (− ln u′2)

′. Thus for all

v ≥ 0

a2(v) − a1(v) =

(

ln
u′1(v)

u′2(v)

)′

≥ 0

This means thatu′1/u
′
2 is non-decreasing. Therefore,∀v

(

v ≥ z =⇒ u′1(v)/u
′
2(v) >

λ =⇒ λu′2(v) − u′1(v) < 0
)

. Hence,

λu2(x) − u1(x) = λu2(y) − u1(y) +

∫ x

y

(λu′2(v) − u′1(v)) dv < 0

which contradicts the definition ofλ = u1(x)/u2(x). Therefore, the following must hold:

∀x, y

(

0 < y < x =⇒
u1(x)

u1(y)
≥
u2(x)

u2(y)

)

Part II: Assume∃y
(

0 < y < x ∧ λu2(y) − u1(y) = 0
)

, that is
∫ y

0
(λu′2(v) − u′1(v)) dv = 0

Note thatu′1/u
′
2 is non-decreasing. In order to satisfy the above, either∀z

(

0 < z < y =⇒

λu′2(z)− u′1(z) = 0
)

or ∃z1, z2
(

0 < z1 < z2 < y ∧ λu′2(z1)− u′1(z1) > 0 ∧ λu′2(z2)−

u′1(z2) < 0
)

. But the later case means that∀v(z2 ≤ v ≤ x =⇒ λu′2(v) − u′1(v) < 0),

thus

λu2(x) − u1(x) = λu2(y) − u1(y) +

∫ x

y

(λu′2(v) − u′1(v)) dv < 0

which contradicts to the definition ofλ = u1(x)/u2(x). Thus the earlier case∀z
(

0 < z <

y =⇒ λu′2(z) − u′1(z) = 0
)

must be true. Consequently, together withu1(0) = u2(0) =

0, we get∀z
(

0 < z < y =⇒ λu2(z) − u1(z) = 0
)

.

For∀z, y < z < x, applying the inequality result in Part I, we have

u1(z)

u1(y)
≥
u2(z)

u2(y)
=
λu2(z)

λu2(y)
=⇒

u1(z)

λu2(z)
≥

u1(y)

λu2(y)
= 1 =⇒ λu2(z) − u1(z) ≤ 0
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Also, Part I says that∀z
(

0 < z < x =⇒ λu2(z) − u1(z) ≥ 0
)

. Therefore,∀z
(

y < z <

x, =⇒ λu2(z) − u1(z) = 0
)

. Thus,∀z
(

0 < z < x =⇒ λ = u1(z)/u2(z)
)

.
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Chapter 4

Mechanism Design for Grid Computing

Abstract

We develop a system for grid computing where the price of computing tasks are determined

by an audited market-exchange. We show a method to provide a verifiable certificate, called

“witness,” of program execution with the following property: if two different agents running

the same program on the same input produce the same witness, that proves with certainty

very close to 1 that both agents have executed the program correctly. Using these witnesses,

a trusted intermediary audits grid agents by dispatching identical work units to different

agents and comparing their results. The results of past audits create a reputation history for

agents, which is used to offer different prices to consumersbased on the expected reliability

corresponding to a reputation history. We allow reputations to be traded, instead of being

tied to individual agents, and we show that in such a reputation market only high-type

agents would have incentive to purchase a high reputation, and only low-type agents would

use low reputations.

4.1 Introduction

Many of today’s home and office computes are as powerful as supercomputers were a

decade ago. However, most users only use a fraction of this computing power. At the

same time there is an increasing number of applications thatrequire vast amounts of calcula-

tions: movie studios need computers for animation and special effects rendering (http://

news.bbc.co.uk/1/hi/technology/4014333.stm). Medical research use it to
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simulate protein folding (http://folding.stanford.edu/papers.html). En-

gineering firms use it to simulate their designs (http://www-1.ibm.com/servers/

deepcomputing/solutions/functionalverification.html). Astronomers

use it in search of extra-terrestrial life (http://setiathome.ssl.berkeley.edu/).

It would be socially beneficial to utilize the idle computingpower of desktop ma-

chines to solve computation-intensive problems. Companies that need computing power

can save floor space, amortization, maintenance and electricity costs by outsourcing these

tasks to desktop users. Desktop users, however, suffer minor inconveniences from offering

their systems to the grid, such as installation and maintenance of grid applications, increased

network traffic, increase in their utility bill or system instability.

Desktop users must receive some monetary compensation in exchange for the re-

sources they contribute to the grid. However, this also opens the door for fraud, as partici-

pants may skip the computations and guess the result. This isoften easy to do, for example

it is very unlikely that a signal sample from a radio-telescope comes from an extra-terrestrial

intelligence, thus one can safely report that the signal assigned to him did not come from

E.T. without doing any calculation.

Besides malicious errors, incorrect result can also be caused by badly installed

software, computer viruses, faulty hardware or even from cosmic radiation particles alter-

ing memory or CPU state. One way to catch and fix hardware errors is by redundancy, e.g.

using more expensive ECC memory or by running the same calculation on several CPUs,

comparing the results at every instruction step. However, this requires expensive hardware

and high bandwidth physical connection between the coupledprocessors, and it does not

protect against errors related to software installation, misconfiguration or from opportunis-

tic cheating.

Instead of using expensive custom hardware, our goal is to run the computations on

cheap desktop computes, but still find a way to be able to compare two runs from two dif-
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ferent, independently owned and maintained systems. Modern computers execute billions

of instructions and process gigabytes of data each second. To compare two runs, one would

need to produce and compare execution traces, which requires comparing several gigabytes

of data each second. But in practice, we could use a compare function which fail with a very

low probability. This is a well known problem in data communications and cryptography:

we need to calculate a hash function of the large data sets we are comparing. If the hashes

match, then we can say with a very high degree of confidence that the original data sets

are identical. The advantage of using hashes is that it does not require massive amounts of

storage and communication badwidth to hold and transmit execution traces. The hash could

be computed on the fly, and requires minimal storage.

Our suggested approach shares some similarities with the Trusted Platform Mod-

ule (TPM) architecture [45]. The TPM can provide evidence that requested calculation was

performed using the original, unmodified software, but it does not allow the detection of

calculation errors. Also, implementing TPM-based verification requires significant effort,

and incorrect implementation is subject to various attacks; once the protection is circum-

vented, it can be widely deployed. In contrast, our verification scheme relies on the correct

computation of a unique hash, which can only be obtained by performing the requested

calculation. The resulting hash is not a secret, which meansthat the whole system could be

implemented with open-source code and without the use of hardware modules.

Witness of execution

A witness is a fixed-length sequence of bits, which is determined by the program being exe-

cuted, and all of its inputs. The sequence should be long enough to make the probability of

guessing it right low, and should be at least as hard to compute as performing the requested

task.

We can use the witnesses to verify the correctness of calculations. We do this by
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assigning the same job to two different grid agents, and comparing the resulting witness val-

ues. When these match, it provides a high level of assurance that the result is correct. This

method reliably catches random errors from hardware components (memory corruption,

or processor miscalculations due to faulty components, overclocking, bad power supply,

failed cooling system etc.), and it can also catch maliciouserrors, when the agent skips the

calculations and returns bogus results.

To generate a witness we can generate an execution trace while running the com-

putations and feed that to a hash function. But how can we obtain such a trace? The most

efficient way would be to support this in hardware, the CPU could compute a hash of the

execution trace in hardware without any performance loss. Perhaps in the future this feature

will be integrated into processors, but until then we need a software solution.

There are several ways this could be implemented in software. The easiest, but

most limited method is to modify the compiler to insert extracode collecting execution

data and feeding it into the hash function. A more universal solution is to use virtualization

techniques, such as on-the-fly code instrumentation (like the ones used in VMWare or the

Valgrind debugger). This could be even easier for recent languages like Java or C# which

already run on a virtual machine, where the virtual machine implementation could be mod-

ified to collect execution hashes. Our prototype implementation uses the first method, a

modified C compiler to generate an execution hash. Even though this is not a universal

solution, it is sufficient to study the impact of our data gathering on performance.

The are several important implementation details and tradeoffs that can have sig-

nificant impact on the usability of this method. How long the hash should be? Suppose

that an average job takes one hour to complete. If each such job is verified with a 32-bit

hash function, the mean time between missing a mistake wouldbe at least 490 thousand

years. To get the actual number, we have to divide this time with the probability of fail-

ure, which means that in practice a 32-bit hash would miss less than one error in a million
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year period. Of course, when many concurrent computation isbeing verified, the chance of

passing an incorrect computation as a success increases, but even with a million concurrent

computations, we can expect less than one misdetected failure in a year.

What type of hash function should be used? Cryptographic hash functions are

tamper-proof, however they are also more costly to compute.Even though we cannot prove

it, we conjecture that for our purpose, simple hash functions are sufficient. The main prop-

erty we need for the execution hash function is that it must beas hard to compute as running

the application which we want to trace. A simple hash function is not suitable in cryptogra-

phy because for a known hash value it is easy to produce text with almost arbitrary content

which hashes to the known value. However, in our case the hashvalue is the result of the

computation, which is not known until the program has run, thus our conjecture is that the

use of cryptographic hashes does not improve the trustworthiness of the result. This allows

us to use any easy to compute hash function with a good distribution.

The use of execution hashes provide a cheap way to achieve highly reliable compu-

tation results without the need for expensive high-end hardware. In fact, the computations

can be distributed over the network to external self-interested agents, by breaking up a large

job into smaller work units and dispatching each work unit totwo independent agents. Two

agents returning the same hash result for a work unit guarantees with a very high probability

that both agents have performed their job honestly and correctly, provided that the agents

do not collude. This helps not only to deter agents to cheat, but it can also catch hardware

errors.

Quality differentiation

In reality not all computations need to be 100% correct. For example when a distributed

computing farm is used in a random search of some rare information object, such as a bug in

a CPU design or a protein sequence with some interesting properties etc., then the main goal
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is to maximize the coverage of the search space. On the other hand, there are computations

where errors have catastrophic consequences, such as miscalculating the orbit of a space

probe. In other words, consumers can be differentiated based on their error tolerance. Some

consumers are willing to pay a high price for highly reliableresults, but an unreliable result

may have no value for them. Other consumers would pay much less for the most reliable

results, yet they are still able to compete for resources because their willingness to pay is

less sensitive to the reliability of the results.

Our proposed auditing mechanism enables this quality discrimination: it can pro-

vide practically 100% assurance for quality-sensitive consumers, and using the past reputa-

tion of the agents, it can also measure the expected failure rate of agents.

If there is enough demand for less than 100% reliable calculations, and the desired

reliability can be achieved by most computers, then it is enough to implement an economic

mechanism which would induce self-interested agents to honestly perform the computations

assigned to them. This can be implemented at a much lower cost: instead of duplicating

all computations, it is enough to repeat just a small sample of the work units, and “punish”

defecting agents enough to make cheating unprofitable.

In addition to discouraging malicious behavior, our mechanism also provides a

level of assurance against hardware failures caused by faulty components, and it creates

incentives for grid providers to maintain their computers to keep their failure rates low.

While errors caused by cosmic radiation are rare, and it equally affects everyone, errors

from broken components are less evenly distributed: if there is a problem, it often shows

up quickly, so if a program does not fail due to a hardware problem on the first day, then it

is unlikely to fail in the future. Therefore, most hardware errors can be eliminated by more

thorough checking of new machines. This also helps to eliminate malicious hardware errors

coming from greedy agents overclocking their computers.

In the subsequent chapters we will summarize previous related results, we discuss
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the technical implementation of the witness system, then welook at economic mechanisms

against cheating. First we will show that simple random checking of each work unit does

not work because it would require too much checking and too high payment. Then we’ll

show that unconditionally checking one randomly selected unit of a large bundle works

well to discourage cheating, while it is of very low cost. Further, we will look at different

types of consumers and suppliers which allow price-discrimination based on quality, and it

naturally creates a need for a market for suppliers and consumers. We try to find a steady-

state market equilibrium.

4.2 Related research

When the goal of a distributed computing effort is to invert aone-way function, i.e. given a

function value, find an input where the function takes that value, the verification of the work

is easier. Computing such a function produces a result whichis in itself a sufficient witness

of the computation, there is no need to add extra code. Golle and Mironov [46] show that for

such problems the principal can verify the agents by pre-computing some results and pass

these to the agents together with the desired goal value. To receive payment, the agents must

find the inverse for all precomputed values. Unfortunately,this method is only practical for

problems where the search space is very large and checking a given member of the search

space is inexpensive.

Much of the existing research on distributed computing focuses on the optimal allo-

cation of resources using economic mechanism design, wherethe allocation problem itself

is often computationally intractable [47]. They also make simplifications about the agents

where it is assumed that an agent is either a rational selfish node with access to fully reliable

computing resources, or faulty nodes with no strategic behavior. In contrast, the agents we

study here always act strategically, and their computers are not 100% reliable. And instead

of using mechanism design to allocate jobs, we rely on an exchange market for reputations

77



www.manaraa.com

where agents can signal their type and their willingness to lower their computational failure

rates by purchasing a reputation.

Similar to the real stock market, to make the market work, we also introduce au-

diting which uses random checks on the agents’ work and ties the payment for the work as

well as their future reputation to the outcome of these checks. In the spirit of distributed

computing, the auditing itself is distributed by randomly selecting a few jobs which are

assigned to several agents, comparing their results and repeating this until two matching

results are found. This match confirms the correctness of thematching results and also

confirms the incorrect results from the other agents. In effect, we use unreliable distributed

agents to perform reliable distributed auditing.

The monitoring we propose here is most similar to accountingrules and auditing of

firms. Firms must document their income, expenses and investments, which is an overhead

above the basic function of the firm, similar to the code we addto produce a verifiable

witness. Firms are periodically audited, where auditors check random samples to verify the

firms’ operation.

Early papers about reputations assumed that the firm and its reputation is insepa-

rable, thus reputation is not a tradeable asset. Many papersuse the model in [48] where

a single long-lived player faces opponents who participateonly in one round, but can par-

tially observe the previous actions of the long-running player. However, in this framework

reputation can have a negative effect [49]. The problem withreputations is that once a good

reputation is built, the firm decreases its effort and quality level and achieves higher profits

by running down a good reputation. Introducing a market for reputations eliminates these

issues, because lower quality is punished by the reduced value of the firm’s reputation.

The monitoring together with the market for reputations reduces the issues related

to career concerns [50].
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The basic idea of using a general equilibrium analysis to analyze the market for

firm reputations was first developed in [51], and this model was later substantially extended

in [52]. Our reputation market model is similar to the model in [52], but we significantly

extend their model. First, in our model a successful outcomecannot be easily distinguished

from failure. Furthermore, we introduce an intermediary, who can audit the work of agents

and can make payment contingent on a successful audit. Instead of a continuum of agent

types, we will assume that there are only two types of agents,however, the types only

determine the agents’ cost of effort, and the agents choose their effort level, thus indirectly

their success rate, strategically. Finally, we do not restrict agents to live for only two periods.

4.3 Technical implementation

We have used the C-Breeze C Compiler Infrastructure [53] to automatically add code to C

programs which computes the execution trace hash. We do thisby recording the direction

of each conditional branch in the code. But recording the complete branch history can

consume an unlimited amount of memory, and we are not interested in the actual branch

history, we only use that to make sure that two independent computations match. For this

it is enough to store a hash function of the complete branch history. Although we cannot

prove this, we conjecture that for this purpose we do not needa cryptographic hash function,

which would require substantial computation overhead. Ourinitial implementation uses

a simple CRC32 hash function. The prototype implementationincreases the run-time of

applications by about 50%.

For each branch we assign a 32-bit memory location which holds a shift register

with a history of the last 32 branches. At every 32nd branch a hash subroutine is called to

merge the content of the shift register to the global branch history hash using CRC32. If a

different hash function is desired, only this single hash function has to be modified.
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4.4 Economic model

• In our economic model we have “consumers” who need to performsome expensive

computations and we have “agents” who have machines with spare CPU time that

they are willing to sell. Consumers and agents do not deal with each-other directly,

instead they buy/sell services from/to a trusted intermediary.

• We assume that the intermediary deals with a large number of agents and consumers

where no single agent has power to change prices.

• To simplify the discussion, we assume that all computation jobs can be divided to

identical size units, although our results would hold for heterogeneous job sizes. We

call these “Work Units.”

• The principal can only verify the correctness of a result returned by an agent by re-

peating all the calculations. The computation process usedto calculate each work

unit produces a unique result that can only be obtained by performing all the compu-

tations.

• Agents do not collude, and if two agents independently return the same result, then

the result is assumed correct.

• Agents can leave and create new identities at no cost.

• The principal has no power to impose penalties on agents returning false results with-

out performing the computation beyond withholding paymentto previously returned

results.

• The principal keeps record of previously completed work units for each agent iden-

tity, and determines the future per unit payment solely based on this history.
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• Agent identities are tradeable assets and the principal cannot connect agent identities

to physical agents.

• We assume that consumer demand exceeds the available computation power offered

by agents. Consumers bid for resources by submitting the perunit price they are

willing to pay as a function of the expected failure rate. Based on this the principal

calculatesp(ψ), the price of a work unit with an expected failure rateψ, which is the

highest bid price forψ failure rate.

• Agents can reduce their failure rate by choosing their effort level. Letφ(w) denote

the expected failure rate for effort levelw and letχi(w) be the cost of effort for agent

i. Note thatφ is universal whileχ varies based on the agent ability.

• The principal determines the rationally expected failure rateψi of each agent based

on the previous work record of their identities, and sets theper unit price paid to the

agent top(ψi). Note, however, that the principal can delay payment and canwithhold

payment for past items, if an incorrect result is discovered.

The most obvious way to assure error-free calculations is tokeep assigning the

same job to agents until two result match (i.e. execution hashes match). However, if a small

failure rate is acceptable, then we can do much better, as we only need to verify a small

number of randomly chosen calculations to keep the agents honest.

4.5 Monitoring

Agents pick up work units from the principal when they are ready to do calculations and

are expected to return the completed unit as soon as they finish. To ensure a timely com-

pletion of the jobs, each work unit has an expiration time after which the result is no longer

accepted, and the principal reassigns the work unit to a different agent.
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Agents get paid after everyr completed work units subject to passing verification.

From the batch ofr work units the principal randomly picks one which she also assigns

to an other agent. If the results returned by the two agents are identical, then that testifies

that both agents have returned correct results, and both agents will get paid after they have

completed theirr units of calculations. If the results do not match, the principal will keep

reassigning the unit to other agents until two of the resultsmatch. The two agents with

correct calculations are paid for theirr unit batches, but the other agents get no payment

even if some of the other work units they have returned are correct.

The principal can perform the random draw for the items to be verified in advance,

and when enough agents are available, she can use that to minimize the time an agent may

have to wait for verification after she has completed a batch of r units. The only time the

agent may have to wait is when the verified unit is her last unitin the batch. For these

last units the principal can pick a unit which has been computed by an other agent, but

if the two computations do not match, the agent will have to wait until her result for the

last unit is proven to be correct or incorrect. The principalcan minimize the probability

of waiting by using a unit which has been previously calculated by an agent with a low

expected failure rate. Given these measures we can assume that the effect of waiting for

verification is negligible.

The principal always sells the unverified(r − 1) units from each batch ofr units,

but she only pays the agents, if the verification is successful, so the principal can earn

money from selling the work of failed agents, however she hasexpenses to cover the cost of

calculating the verified units twice. The principal’s revenue from an agent with an expected

failure rateψ and a batch ofr units is

(r − 1)ψp(ψ) − (1 − ψ)
(

p(ψ) −
p(0)

2

)

r must be large enough to ensure that the principal is not losing money. It is also possible
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that the principal earns money from some agents and loses on others depending on their

expected success rate.

The agents do not know which unit will be verified, therefore the expected failure

rate of the verification is the same as the expected failure rate of the agent. This means that

the compensation is fair: the expected payment of the agent is proportional to the expected

number of correctly calculated work units returned by the agent.

This is the least amount of verification the principal must doto ensure that agents

do the work. If there were a positive probability that no workunits are checked from the

batch ofr units, then the agent could do no work at all and could still expect payment in

case the principal skips verification.

4.6 Market

We refer to agents working for the grid as grid providers. Grid consumers have jobs they

need to compute. The grid platform provides a market to matchconsumers with providers.

Consumers have a two-dimensional type,(v, f) ∈ R
2, wherev is the consumer’s valuation

for a correctly calculated work unit andf−v is the consumer’s loss, if the result is incorrect.

Grid providers choose effortw ≥ 0 which affects the probabilityφ(w) that a work unit is

calculated incorrectly. Grid providers have a type(c, α) ∈ R
2
+. The cost of calculating a

unit is c + αw. φ, c, α andw are unobservable. Each provider has an identity, and each

identity has a history of verified successes or failures. Identities can be traded. Consumers

can only observe the agents current identity and the historyattached to the identity. Con-

sumers cannot observe the trade of identities. It is free to create a new identity with no past

history. We assume that the expected future failure rate of agiven identity only depends

on the number of past successes and failures, i.e. the history can be summarized in a dis-

crete two-dimensional measure(n, k) ∈ N
2 for an identity withn verified successes andk

failures. We search for a steady-state equilibrium where the expected failure rate for each
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identity remains unchanged over time, letψ(n, k) denote this failure rate. The payment

function isp(ψ), the consumers utility isv − ψf − p(ψ).

Unreliable agents can provide reliable results by repeating the calculations until

two matches. To get a guaranteed result, the principal wouldkeep assigning the same work

unit to different agents until two results match. The principal will only pay for the two

successful calculations, so the cost for the principal is always2p(φ) if the agents’ failure

rate isφ.

Let p0 be the cost of the cheapest agent. As we have shown above, by repeated

calculations even the cheapest agent can deliver reliable result at a cost2p0. The consumer

must choose between a reliable calculation at cost2p0 or a randomly checked calculation by

an agent with a reputation score(n, k) with an expected failure rate ofψ(n, k). For random

checking, the principal assignsr(n, k) work units to an agent, and randomly checks one of

them by also assigning one out of ther(n, k) units to an other agent. The calculation of

this one work unit is repeated until two calculations match.The market maker can sell this

checked work unit as a verified work unit for2p0. The unverified units in a batch are sold

to the consumers regardless of the result of the checks usingthe price corresponding to the

success probability (that is,ψ) prior to the verification. The consumer’s surplus is:

s(ψ) = v − ψf − p(ψ)

The risk-neutral consumer choosesψ > 0 if s(ψ) > v − 2p0, have a positive expected

profit, andψ maximizes this profit, thus the following must hold:

p(ψ) ≤ min{v, 2p0} − ψf(4.1)

p′(ψ) = −f if > holds in (4.1)(4.2)

Let ψ(n, k) be the expected failure rate of an agent with a history ofn verified successes

andk failures. The payment for such an agent isp(ψ(n, k)) = p(n, k) per unit, if he passes
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the random verification of one out ofr units. LetV0(n, k) be the current market price for

a reputation score of(n, k) and letV1(n, k) be the market price in the next round. Before

starting to work on a new batch agents can trade identities onthe market. If there is any

identity available which could provide higher expected payoff, then the agent would trade

his old identity to this more profitable one. Note that the cost of trading the current identity

to the new one must be factored into calculating the payoff. This means that we can assume

that each agent trades at every period because they can sell and repurchase their current

identity at no cost. We assume that no single agent could affect the market prices. Because

of the trade after each round, we do not lose generality by assuming that agents live for one

period, and where they purchase an optimal identity at the beginning of the period, execute

r work units assigned to them, then receive their payments, update their identity, sell this

updated identity on the market and retire. Agents choose their identity and their effort to

maximize profit. We assume that there are no budget constraints and agents are risk-neutral.

Let ∆1V (n, k) = EV1(n+1, k)−V0(n, k), ∆2V (n, k) = EV1(n, k+1)−V0(n, k). Note

that∆1V > 0 and∆2V ≤ 0. In fact,V1(n+1, ·) is not known until the next trade, however,

it has an expected value, and the previously defined∆ in fact denotes the expected change

in the value of the identity. Define

(4.3) s(n, k) = p(n, k) +
∆1V (n, k) − ∆2V (n, k)

r

s(n, k) the agent’s revenue difference between passing and failingverification on a batch

of r units accounting for both the lost payment and decreased reputation value.s(n, k) is

determined by the market, and it is not affected by the agent’s effort. Using this we can

express the agent’s profit per unit:

Π(α, n, k,w)= p(n, k) +
∆1V (n, k)

r
− c− αw − φ(w)s(n, k)

= s(n, k) +
∆2V (n, k)

r
− c− αw − φ(w)s(n, k)
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The optimalw satisfies:

−φ′(w)s(n, k) = α

The agent’s effort is increased until the marginal cost of effort (α) equals to the marginal

increase in income. Let’s assumeφ(w) = e−w, this impliesφ(w)s(n, k) = α andw =

ln s(n, k) − lnα, thus the agent’s profit is

(4.4) Π(α, n, k) = s(n, k) +
∆2V (n, k)

r
− c− α(1 + ln s(n, k) − lnα)

Π(α, n, k) = α(ew − 1 − w) +
∆2V (n, k)

r
− c

φ(w)s(n, k) = α allows us to calculate the expected failure rate for a reputation of type

(n, k):

(4.5) ψ(n, k) =
E(α|n, k)

s(n, k)

4.7 Separation

High-type agents would choose an identity which looses lot of value in case of a failure but

it gives higher than average payment plus value increase in the case of success. This in turn

implies that these agents choose high effort. Let us explorethis idea more formally.

Let us assume that there are two agent types,(α0, c0) and(α1, c1) with α0 > α1

andc0 > c1, i.e. (α0, c0) is the low type (higher expenses for the same work). In a market

equilibrium all agents of the same type have identical expected profit, even if they have

different reputation scores, because if one reputation were to give higher expected profit

than an other, the demand for that reputation would increaseresulting in a higher price to

remove the imbalance. Letπ0 andπ1 denote the expected profit of low and high type agents

respectively, andΘ = π1 − π0 be the expected profit difference between high and low type

agents. Agents purchase a reputation which maximizes theirprofit.
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If reputation(n, k) is used by low type agents only, thenΠ(α0, n, k) = π0 and

Π(α1, n, k) < π1, thereforeΛ(n, k) = Π(α1, n, k)−Π(α0, n, k) < Θ. SimilarlyΛ(n, k) >

Θ is reputation(n, k) is only used by high-type agents andΛ(n, k) = Θ when reputation

(n, k) can be used by either types.Λ(n, k) can be calculated from equation (4.4)

Λ(n, k) = c0 − c1 + α0(1 − lnα0) − α1(1 − lnα1) +

(α0 − α1) ln s(n, k)

Only the last term above depends on the reputation, all otherterms are constant. This means

that knowingΘ ands(n, k) is enough to determine the type of agents using the reputation

(n, k). There is a thresholdΞ such that reputation(n, k) is used only by low-type agents,

if s(n, k) < Ξ, only used by high-type agents ifs(n, k) > Ξ. The only time when the

reputation does not reliably predict the type of its owner iswhens(n, k) = Ξ.

This means that in the worst case we have a separating or semi-separating equilib-

rium, depending on if there is(n, k) such thats(n, k) = Ξ.

Equation (4.5) can be written as

ψ(n, k) =











α0
s(n,k) when s(n, k) < Ξ

E(α|n, k)
Ξ when s(n, k) = Ξ

α1
s(n,k) when s(n, k) > Ξ

This implies that even the hardest working low-type agent isusing less effort than the lowest

effort level of a high-type agent. Also, the expected failure rate from a low reputation (with

s(n, k) < Ξ) is always strictly higher than the expected failure rate ofa mixed reputation

(if such exists) which in turn has a strictly higher failure rate than any high-reputation (i.e.

s(n, k) > Ξ).

4.8 Consumer pricing

Let us assume two types of consumers, high-type consumers, who need verified results,

which they either get from the intermediary and they would pay 2v0, or get by repeatedly
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Figure 4.1: The price per unit as a function of the error rateψ

submitting the same unit until two results match, which means their type is(v0, v0). An

other consumer type is willing accept unverified results, with type(v1, f1), v0 < v1 < 2v0.

Further, we assume that demand exceeds supply, thus some consumers will not be served,

and the consumers’ surplus is zero. Consumers of the same type will choose from several

different agent identities with differing quality of service, but agent identities with higher

expected failure rate will require lower payment, making the consumers indifferent between

these agents. If qualityψ is chosen by consumer typei, thenvi − ψfi − p(ψ) = 0, thus

p(ψ) falls on one of two linear functions. The intersection of these linear functions gives

the quality levelψm that separates the consumption of low-type and high-type consumers:

v0(1 − ψm) = v1 − f1ψm:

ψm =
v1 − v0
f1 − v0

Quality levelsψ < ψm will only be used by high-type consumers, andψ > ψm will only

be use by low-type consumers, therefore

p(ψ) =

{

v1 − f1ψ if ψ ≤ ψm
v0(1 − ψ) if ψ ≥ ψm
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V (2, 1)
p(2, 1)

V (2, 0)
p(2, 0)

V (1, 0)
p(1, 0)

V (0, 0)
p(0, 0)

V (4, 2)
p(4, 2)

V (3, 2)
p(3, 2)

V (4, 1)
p(4, 1)p(3, 1)

V (3, 1)

V (4, 0)
p(4, 0)

V (3, 0)
p(3, 0)

Figure 4.2: The game board

E(α|n, k) = ψ(n, k)s(n, k)

= ψ(n, k)

(

vi − fiψ(n, k) +(4.6)

∆1V (n, k) − ∆2V (n, k)

r

)

4.9 Steady state

We try to find a steady sate where the portion of identity typesdo not change over time. Let

λ(n, k) denote the portion of the(n, k)-type identities.

λ(n, k) = ψ(n, k − 1)λ(n, k − 1) + (1 − ψ(n− 1, k))λ(n − 1, k)

For the boundaries, for eachn there is a number of failures above which the identity be-

comes worthless and disappears from the market, denote thisby d(n) ≥ 0. Clearly,d must

be non-decreasing andd(0) = 0. We defineλ(n, k) = 0 for k > d(n) andk < 0. In a

steady state equilibrium where the number of agents do not change, each discarded identity

must be matched by a new(0, 0) identity entering the game:

λ(0, 0) =

∞
∑

n=0

ψ(n, d(n))λ(n, d(n))

λ(n, 0) = λ(0, 0)

n−1
∏

i=0

(1 − ψ(i, 0))
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The equilibrium can be described as agents moving on an infinite game-board,

where squares of the board correspond to reputation scores.Agents can jump to any square

on the board by purchasing a right to move to that square. Agents then perform com-

putations ofr work units, one of which is randomly verified, and based on theresult of

the verification, agents move either one square to the right (success) or one square down

(failure). The lower-left portion of the board will have unused squares corresponding to

worthless reputations. The upper-right squares are occupied by high-type agents, and the

low-type agents live in between, with some squares possiblyshared by both low and high

types.

In an equilibrium trade will only occur at the boundaries, i.e. after a failure when a

high-type agent would have to move to a low-type square or after a success when a low-type

agent would have to move to a high-type square. Trading is notprohibited in other cases,

but there is no gain that can be made. This means that we only need to know the value of

these boundary squares. Probably this equilibrium is not unique.

We can first attempt to find an equilibrium where high type agents will always start

at square(h, 0) and will sell their reputation to low types after the first failure, i.e. high-

types will always have a reputation(n, 0) with n ≥ h.

4.10 One-dimensional equilibrium

4.10.1 Pure strategy equilibrium

Or even more extreme, assume any reputation with a history offailure is worthless. This

implies that low-types will sell to high types when they reach (h, 0). Note that if there were

such equilibrium, that would imply that high-types are subsidizing low-types.

To simplify notation in this one-dimensional case, we use the following:

Vi = V (i, 0), pi = p(i, 0), ψi = ψ(i, 0), si = s(i, 0)
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Also assume that the value and payment for all(n, 0), n ≥ h reputations is the

sameVh andph. This impliessh = ph + Vh/r and

Vh
r

= sh − ph =
α1

ψh
− p(ψh)

And for i < h we have
Vi+1

r
= si − pi =

α0

ψi
− p(ψi)

For i = h− 1 this implies

α1

ψh
− p(ψh) =

α0

ψh−1
− p(ψh−1)

Equation (4.4) can be rewritten as

(4.7) Π(α, n) =
α

ψn
− c0 − α(1 − lnψn) −

Vn
r

Recall thatπ0 (π1) denotes the expected profit of low-type (high-type) agents:

π0 =
α0

ψ0
− c0 − α0(1 − lnψ0)

π0 + c0
α0

+ 1 =
1

ψi
+ lnψi −

1

ψi−1
+
p(ψi−1)

α0

π1 = p(ψh) − c1 − α1(1 − lnψh)

The agents do not like to lose money:

0 < π0 =
α0

ψ0
− c0 − α0(1 − lnψ0)

The high-type agent must prefer reputation(h, 0) to (h− 1, 0):

α0

ψh−1
−

α0

ψh−2
+ p(ψh−2) − c1 −

α1(1 − lnψh−1 − lnα1 + lnα0) < p(ψh) − c1 − α1(1 − lnψh)

α0

ψh−1
−

α0

ψh−2
+ p(ψh−2) − p(ψh) − α1

(

ln
α0

ψh−1
− ln

α1

ψh

)

< 0
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As before, letλ0 be the number of low-type agents andλ1 be the number of high-type

agents. At every roundψhλ1 high-type agents fail and start over purchasing a(h, 0) repu-

tation. Letλz be the number of low-type agents with(0, 0) reputation:

ψhλ1 = λz

h−1
∏

i=0

(1 − ψi)

λ0 = λz

h−1
∑

k=0

k−1
∏

i=0

(1 − ψi)

Substitutingλz we get

(4.8)
λ0

λ1
= ψh

h−1
∑

k=0

h−1
∏

i=k

(1 − ψi)
−1

Eliminatingπ we are left withh+ 1 equations forh+ 1 unknowns:

1

ψ0
+ lnψ0 =

1

ψi
+ lnψi −

1

ψi−1
+
p(ψi−1)

α0
, i ∈ {1, . . . , h− 1}

Vh
r

=
α0

ψh−1
− p(ψh−1) =

α1

ψh
− p(ψh)

λ0

λ1
= ψh

h−1
∑

k=0

h−1
∏

i=k

(1 − ψi)
−1

Note that1/x + lnx is strictly decreasing forx ∈ [0, 1], as its derivative is1/x − 1/x2 =

(x− 1)/x2 < 0. Also
1

ψi−1
−
p(ψi−1)

α0
=

Vi
rα0

≥ 0

This impliesψi ≤ ψ0 for all i ∈ {1, . . . , h − 1}. We also want to showψi+1 ≤ ψi. Prove

by contradiction, supposeψi ≤ ψi−1 andψi+1 > ψi, this would implyVi+1 < Vi which

leads to contradiction if1
ψ
− p(ψ)

α0
is decreasing inψ, which is true ifψ is small.

Incentive compatibility conditions: high-type agents make more money using high-

reputations, low-type agents make more money with low reputations. No switching condi-

tions:

π1 = p(ψh) − c1 − α1(1 − lnψh) ≥
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α0

ψh−1
−

α0

ψh−2
+ p(ψh−2) − c1 − α1

(

1 − ln
α1ψh−1

α0

)

π0 =
α0

ψh−1
−

α0

ψh−2
+ p(ψh−2) − c0 − α0(1 − lnψh−1) ≥

p(ψh) − c0 − α0(1 − lnψh)

All agents want to make a profit, i.e.Π(α, n, k) ≥ 0. Since the no-switching conditions

ensure that high-type agents make more than low-types, it isenough to verify this for low-

type agents, and since all low-type agents have the same profit, it is enough to look at

reputation 0:
1

ψ0
+ lnψ0 ≥ 1 +

c0
α0

Note that this always holds whenc0 = 0.

4.10.2 Solving the equations

For eachh we can solve the equations above, and we can substitute the solution to the

incentive compatibility conditions. Computer experiments show that for smallh values

the incentive condition which ensures that low-type agentsdo not use high reputation will

not hold, while for largeh values the high-type agents would want to switch to using low

reputations. Our experiments have showed that there is either a uniqueh s.t. the solution

satisfy the no-switching conditions which leads to a uniquepure-strategy equilibrium, or

there is a uniqueh where the solutions lead to a situation where low-type prefer reputation

h to h− 1, while high-types prefer reputationh− 1 to h. In this later case we need to look

for a mixed-strategy equilibrium where reputationh is shared by low and high type agents.

4.10.3 Mixed reputation

Looks like it is necessary in some cases that reputation(h, 0) is shared between low and high

type agents. Letσ be the portion of low-type agents using reputationh, and for simplicity
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let ψh be the low-type failure rate. The expected mixed failure rate is

σψi + (1 − σ)
α1

α0
ψi

Let γ = σ + (1 − σ)α1/α0. Note thatγ < 1.

1

ψ0
+ lnψ0 =

1

ψi
+ lnψi −

1

ψi−1
+
p(ψi−1)

α0
, i ∈ {1, . . . , h}

Vh+1

r
=
α0

ψh
− p(γψh) =

α1

ψh+1
− p(ψh+1)

π1 = p(ψh+1) − c1 − α1(1 − lnψh+1) =

α0

ψh
−

α0

ψh−1
+ p(ψh−1) − c1 − α1

(

1 − ln
α1ψh
α0

)

Let λh be the portion of agents with reputation(h, 0).

λh = λz

h−1
∏

i=0

(1 − ψi)

(4.9) λ0 = λz

h−1
∑

k=0

k−1
∏

i=0

(1 − ψi) + σλh

Divide byλh:

λ0

λh
=

h−1
∑

k=0

h−1
∏

i=k

(1 − ψi)
−1 + σ

λ1ψh+1 + (1 − σ)λh

(

α1

α0
ψh − ψh+1

)

= (1 − σψh)λh

(λ1 − (1 − σ)λh)ψh+1 = (1 − γψh)λh

λ1

λh
− (1 − σ) =

1 − γψh
ψh+1

Divide byψh+1 and add to (4.9), useλ0 + λ1 = 1:

1 − λh =
1 − γψh
ψh+1

λh + λz

h−1
∑

k=0

k−1
∏

i=0

(1 − ψi)
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1 =
1 − (ψh+1 − γψh)

ψh+1
λh + λz

h−1
∑

k=0

k−1
∏

i=0

(1 − ψi)

1 =
1 − γψh
ψh+1

λh + λz

h
∑

k=0

k−1
∏

i=0

(1 − ψi)

4.11 Conclusion

We show that in a reputation market where an intermediary hasthe power to measure and

record the past results of agent identities and withhold payment when the verification has

failed, the reputation can act as a good predictor for the expected success rate of an agent

using that reputation, even if reputations are tradeable. We have studied a special one-

dimensional reputation mechanism where any detected failure during an audit will make the

reputation lose all of its value, thus the reputation is simply the number of past successful

audits for a given reputation.

Computer simulations have shown that in this game the higherreputation will cor-

respond to more reliable results, and agents self-select a reputation reflecting their types:

low reputations are only used by low-type agents, high reputations are only used by high-

type agents and there can be at most one reputation level which can be shared by both low

and high type agents.

Our conjecture is that this game always leads to a unique equilibrium, which is

either fully-separating with low-type agents only using reputation(h − 1) or lower, while

high-type agents use reputationh or above, or the equilibrium is semi-separating, where

reputationh is used by both agent types and the low-type agents use a randomized strategy

to decide if they sell a reputationh or take an other batch of calculations, and try to finish

that in order to be able to sell reputation(h+ 1) later.

In our future research we would like characterize the equilibria using the more gen-

eral two-dimensional reputation measure and, if possible,show that the reputation market
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helps to avoid equilibria where high-type agents may sell their reputation to a low-type

agent after a successful audit.
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