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This thesis looks at three aspects related to the designauininerce systems,
online auctions and distributed grid computing systems.st@v how formal verification
techniques from computer science can be applied to ensumthectness of system design
and implementation at the code level. Through an e-tickessaxample, we demonstrate
that model checking can locate subtle but critical flaws ttztitional control and auditing
methods (e.g., penetration testing, analytical procgdurest likely miss. Auditors should
understand formal verification methods, enforce engingeio use them to create designs
with less of a chance of failure, and even practice formafication themselves in order to

offer credible control and assurance for critical e-system

Next, we study why many online auctions offer fixed buy pricesnderstand why
sellers and auctioneers voluntarily limit the surplus tbag get from an auction. We show
when either the seller or the bidders are risk-averse, apigophosen fixed permanent buy-
price can increase the social surplus and does not decreasggected utility of the sellers
and bidders, and we characterize the unique equilibriuategiies of uniformly risk-averse

buyers in a buy-price auction.
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In the final chapter we look at the design of a distributed -gachputing system.
We show how code-instrumentation can be used to generateessiof program execution,
and show how this witness can be used to audit the work ofrselfested grid agents. Us-
ing a trusted intermediary between grid providers and custs, the audit allows payment
to be contingent on the successful audit results, and itesemverified reputation history
of grid providers. We show that enabling the free trade ofitefions provides economic
incentives to agents to perform the computations assigaatljt induces increasing effort
levels as the agents’ reputation increases. We show thaicim & reputation market only
high-type agents would have incentive to purchase a hightagpn, and only low-type

agents would use low reputations, thus a market works asusahaignaling mechanism

about the agents’ type.
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Chapter 1

Introduction

This dissertation is a sample of the research | have donaglamy 7 years in the doctoral
program. It includes three independent works covering #idgiof Economics, Computer

Science and Information Systems.

Chapter 2 represents my early research on the use of formataton methods
to audit e-commerce systems. An e-commerce system is irafdadtributed computing
environment where several concurrent programs, oftenimgron different computers, in-
teract with each other and with the outside world. Onlinariesses are highly automated,
and are heavily dependent on the correct design and opeEtibeir systems. They must
ensure timely responses to consumer requests, they must guasumers’ private infor-
mation and increasingly often they have to be able to resafitious attacks. | propose that
beyond conventional testing methods firms must also employdl! verification methods,
especially to find problems stemming from the interactiorwaicurrent independent pro-
grams. Admittedly, this chapter does not contain any oaigiasults, but, through simple
examples, it shows how formal methods can be applied in thesaress context. Parts of

the work presented in Chapter 2 was published in [1].

In Chapter 3 | study permanent buy-price auctions. A fixed-jmige is posted
throughout such an auction, and any bidder at any time cacisgehe option of purchasing
the item for sale at this fixed price. Clearly, this fixed buice puts an upper limit on
the maximum surplus which can be achieved by the seller, Istiow that despite that

the seller’s utility increases when either the seller or thhgers are risk-averse, and the
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buy-price is not too low. | also calculate the unique eqtilliim strategies of bidders in
these auctions under the assumption that all bidders stesate linear or concave utility

function. The work in this chapter has been published in [2].

In Chapter 4 | describe my current ongoing research focusinghe design of
grid computing systems. To be able to build a commercialfpld grid infrastructure one
must design an economic incentive system which inducesrgeliested profit-maximizing
agents to honestly perform the tasks assigned to themotlinte a “witness” system which
is similar to a message-digest of the execution paths takele winning a program. This
system can be implemented in software via code instrumentaiowever, in the future it
could be easily integrated into CPU hardware to reduce thgatation overhead. | use this
to design a mechanism where a trusted intermediary auditadbnts by assigning some
jobs to multiple agents and comparing their results. Thabéas contracts where payment
is contingent on the audit results, and it allows the intefiany to build a reputation history
for market participants. | show that allowing the free trafleeputations in an open market
induces the agents to put in increasingly more effort thanimally necessary as their
reputation increase, and | show that in this market an agarsignal her type by purchasing
an expensive good reputation when she is high-type, butusihg cheap low-reputations

names when she is low-type.

www.manharaa.com




Chapter 2

Model Checking — A Rigorous and Efficient Tool
for Preventing E-business Failures

Abstract

An unexpected error in an e-business’ processing systemeadyto devastating failures.
Luckily, model checking, an advanced formal verificationtinogl, can thoroughly verify
the correctness of critical e-systems [1]. Temporal logaypled with automata-theoretic
verification, provides a rigorous and efficient means of gpiag and assuring correct e-
process behaviors. Through an e-ticket sales example, mwertgrate that model checking
can locate subtle but critical flaws that traditional coh&ned auditing methods (e.g., pen-
etration testing, analytical procedure) most likely midaditors should understand formal
verification methods, enforce engineering to use them &temesigns with less of a chance
of failure, and even practice formal verification themsslireorder to offer credible control

and assurance for critical e-systems.

2.1 Introduction

In digital economy, many businesses leverage their ctiticginess operations on Internet-
based e-processes. More and more resources are procurejgdacreated and consumed
over Internet, Intranets and Extranets. Even the worldanfaiel markets, telecommuni-
cations, and the supply of water and power partially depenthe operations of massive
Internet-based information systems. Any error in a crificformation system like those for

accounting, stock trading, banking and air traffic contianh potentially cause devastating
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failures. Not to mention there are hackers or even tersashing to discover and exploit

such errors. Tremendous operational uncertainties exigie may result in disasters.

Many e-businesses have fallen victim to operational probleranging from poor
security, inadequate controls, to badly designed and iabtelsystems [3]. Management
lacks reasonable assurance as to the effectiveness aridneffiof its e-operations, the
reliability of information for decision-making, and thearall compliance of e-operations
with applicable laws and regulations. Security breachessaservice failures have become
a fact of life. The “Code Red” worm has affected world-wideckisoft 11S servers and
Cisco routers causing many businesses to halt temporardys ‘R’ Us failed to fulfill
customer orders. Ashford labelled zero prices on luxuryched. Even big players may
tumble. On June 8, 2001, trading at the New York Stock Excbdrajted for almost one

and a half hour due to a software glitch caused by changes iméidecomputing systems.

Current e-business operational incidents are mostly dileetdack of integrity at
the low-level computing and networking services. From afieg systems to browsers to
even anti-virus packages, nearly every major software basahflaw or two; Windows
NT 4.0 had 164 security holes, Internet Explorer 69, Nortariivirus 7, to name just a
few [4]. No wonder most past attacks exploited these eaggtsr Consequently, current
countermeasures (e.g.,firewalls, encryption and patdes)the EDP auditing primarily

focus on these services as well [5].

Unfortunately, even if an ideal computing and networkingimmment exists in the
future, if e-business processes, running on top of the stipgacomputing and networking
services, are not designed or implemented properly, thesguess would still be vulnerable.
The incident of Ashford’s zero pricing was not a technicilfa alone, but rather a lack of

input control over Web catalogs, a problem in the procesgdes

Hence, internal control and assurance over e-operatiopssiential. As in tra-

ditional commerce, e-commerce managers turn to their @dfor support, control and
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independent assurance. The auditing profession has wlestablished CobifTfor gen-
eral information system control [6] and introduced WebTarsd SysTrust [7, 8] targeting
e-commerce assurance. However, these products largejyaaar traditional control con-
cepts and auditing methods [9], which is only a half-rightuton. Traditionally auditing
methods — observing system behavior, inquiring of emplsyegamining documents, re-
processing data, and analyzing information through aicalyprocedures — are useful but
limited. One common feature is their generally informal @adhoc nature; none deliv-
ers mathematical certainty. Even their strongest stegigtrm inherently belongs to the

domain of testing and simulation, methods that have linoitest

The future success of auditors in the high-tech arena regjuiew perspectives and
methods suitable for e-commerce. We suggest that corrpobaess design and imple-
mentation should the first line of defense against erroejdrand hacking. Minimizing
operational faults is critical but not easy. E-businesgsesys are often so complex that
they overwhelm the traditional methods. The complexitytiply arises from the fact that
e-systems are non-stop, non-deterministic computingesystwithin which multiple pro-
cesses with no location constraints execute around th& tian asynchronous and highly
interactive fashion. These concurrent processes exeautyg tasks in unpredictable order,
resulting in virtually unlimited event possibilities anlderefore many uncertainties. Like
many construction or mechanical engineering disasteesntbre possibilities of compo-
nent interactions, the more chances that there is a wha sif events that happen in a
certain order no one has anticipated may bring systems doikabuilders of bridges have
to consider aerodynamic problems, e-business designedstagake into account stresses

caused by new Internet operation environment.

Carefully designed and implemented code can handle mostegsituations and

hence can function well within these defined boundaries. é¥aw it is impossible to con-

1CobiT: Control Objectives for Information and related Teclogy.
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sider all potential scenarios due to the complexity and hubwunded rationality. Hidden
flaws and errors, triggered mostly under unexpected sadeiad to potentially devastat-
ing disasters. For instance, subtle programming bugs hese lolentified as the culprit of
the explosion of the $500 million European Ariane 5 rocket996 [10] and the loss of the
$165 million Mars Polar Lander in 1999 [11]. The chip and ¢elmmunication industries
have long experienced the devastating effects of numernmmesbut hard-to-detect errors.
As we will demonstrate with a rather simple example, a de&dloccurring only when

certain system resources are overloaded, can bring ae sgstem to a halt.

Time pressure to market and the unfamiliarity with the neshitmlogy and econ-
omy add more difficulties in system design and implemematiwhich are often neither
thorough nor correct. Interconnectivity of the Internetlans the scope of an attack al-
lowing the remote and anonymous exploitation of hidden flawsiditors, no less than
management, need to catch these mistakes before hackdraatsters. Penetration test-
ing, analytical procedures and test of details, primarigdil on sampling and statistical
analysis, are inadequate to catch hidden flaws. Similardgouie of formal methods in
work-flow [12, 13] and knowledge-based systems [14], formeaification can supplement
traditional methods and has its niche in e-commerce. Fomwhods is to e-business
process engineering can be what fluid dynamics is to aerngaheingineering and what
classical mechanics is to civil engineering because tlegisaning capabilities are essen-
tial to proper designs and more powerful than human autesrir experiences. Like the
introduction of statistical methods to auditing in the 196@e fuse modern formal verifi-
cation techniques to internal controls and assurancecestvilo date, formal verification
techniques have been successfully applied to complex priccessor designs and criti-
cal telecommunication protocols. Only recently have a fesighers applied them in the

business integrity domain [1, 15, 16, 17, 18].

A powerful yet efficient formal verification method is moddilecking, which can
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verify concurrent, non-stop systems. It can locate suhitechtical flaws that are most
likely to be missed by conventional control and assuranceéhods. Unlike the traditional
EDP methods which generally only analyze the input-outputantics of a system and are
largely based on the manual or computer-aided, post verdicaf point-in-time states,
model checking analyzes both states and state transidodsrovide automated, proactive
and continuous control and assurance. In addition, whaldittonal methods primarily ad-
dresses only “safety” properties (“never” or “always” otes, e.g.debits = credit3, model
checking can also verify “liveness” properties (“evenityalclaims like “a system pro-
gresses without unwanted halt or infinite loop”), esseritialthe correctness of non-stop

e-systems.

The paper is organized as follows. In Section 2.2, we disalssmodel check-
ing has its advantages over testing and simulation. Segti®mepicts current industrial
applications of formal verification. In Section 2.4, we drtve analogy between formal
verification and assurance method spectrums. In Sectigme.fheoretically explain how
model checking works and demonstrate with a traffic contxah&ple. In Section 2.6, we
build an e-business prototype, an e-ticket sale systemyaeuify its correctness using two

model checkers. In Section 2.7, we discuss the researchlnditns and limitations.

2.2 Testing and Simulation vs. Formal Verification

Although testing and simulation have been applied extehsivn system control and as-
surance, they have inherent limitations when compared wenmoformal verification tech-

niques like model checking (Table 2.1).

The major limitation of testing and simulation (Table 2t&nh |a) is that they only
check a fraction of system behaviors. Hence, conclusiossdan the partial coverage of
the state space inherently convey only probability rathantcertainty. Research shows

that testing and simulation probably need to be conducted mere than half of the entire
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Item| Testing & Simulation (a) Model Checking (b)
I | Impossible to cover all system statesQperate on logic and cover the entire

but bugs and errors often hide in handstate space.

to-anticipate scenarios or corner cases.

Il | Need expertise to find test vectordNeed expertise to model processes and

leading to critical execution paths. | properties, but verification is autg

mated.

Il | Tools do not depict what lead to erronsGraphic tools exist to depict what sc

narios lead to errors.

IV | Check only “safety” properties. Verify both “safety” and “liveness”

properties.

V | “Around the system” approaches cariThrough the system” verification re

be taken advantage of by hackers. | quires the knowledge of the system, of

which hackers do not have.

VI | Apply traditionally only after system Apply in parallel with the system de

implementation. velopment life cycle.

D
]

Table 2.1: Comparison between testing & simulation and rihclakecking

useful life of a system in order to discover just one-thirdhaf total errors [19].

Consider an e-process as a state machine and representf ¢aelpmcess’ states
with a vector composed of the simultaneous values of allggewariables and the instruc-
tion pointer of the current execution. The state space okteryincludes all the plausible
combinations of the states of all the system processes. fevensimple system with few
processes, the state space can be astronomically largg exageding the number of parti-
cles in the Universe. Testing and simulation execute asyst¢h chosen test vectors, i.e.,
input sequences attempting to exercise critical execuiaths. In most cases this effort
covers only a microscopic portion of the state space. Fomelg a Web catalog with a
search interface can be tested with selective search psttget it is impossible to try all

query combinations.

Testing and simulation become even harder when a systenewaakinteracting

components running in parallel, creating uncertainties tduthe non-determinism of com-
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munication and component performance. Hidden errors like€' conditions” or “dead-
locks” are likely to occur in such a system but often triggeoaly under certain obscure,
hard-to-guess situations. It is extremely difficult, if moipossible, to select the test vectors

that can catch these errors.

Testing and simulation can provide reasonable system assiif carefully se-
lected test vectors exercise all important execution patlwsvever, the creation of a good
test requires insightful or even imaginative work by thosan intricate knowledge of the
system design and implementation (Item Ila). Althoughgalist to measure the coverage
of testing and simulation, they do not provide automatedna¢acreate test patterns cover-
ing missing critical paths that may lead to problematicwoagiof the state space. Moreover,
each time a process changes, test vectors normally havenodified to cover the new or
modified execution paths. Because of the difficulty selgctest vectors, test vectors are
sometimes generated randomly. But for complex systemsrifteapility of hitting a bug
in a reasonable time with random tests is close to zero [2Q)rellver, in case a mistake
is found, testing and simulation tools usually cannot defpasv the problem occurs (Item
lla).

In contrast, formal verification spans the entire state sgd@ system and prove
property-satisfaction with mathematical certainty: ifygtem is formally verified to have a

given attribute, no system behavior can ever be found taadict this attribute (Item Ib).

The reason why formal verification can achieve the exhagigkamination of a
property is because it analyzes the logic among procestesr than executes them. And
avoiding examining individual executions makes formalifieation efficient. Figure 2.1
illustrates a particular model checking algorithm. It stavith a set of “bad” states (states
that violate the property under examination) and repegategpands this set by adding
states from which a bad state can be reached and marks tlase ‘tiad” as well. In

a finite state system, this procedure eventually coversialstates with an execution path
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leading to bad states. If the initial state is marked “badrhplies the existence of execution
path(s) leading to the violation of the property. This vegfion procedure, based on set
operations, covers states much faster than testing andagioruwhere each test covers
only a few states. It also delivers more reliable resultsabse testing and simulation can
find out property violation if and only if one of the executipaths leading to a bad state
happens to be chosen as a test vector. There are numerouplesahhardware flaws
and software bugs which could have caused significant comaie@amages were missed
by testing and simulation but located quickly with formatifieation [21, 22]. For critical
system properties, the thorough examination offered by&bwerification should be highly

desired or even considered necessary.

g

~ Initial State b
A

Test Vector&"-,

1

Figure 2.1: Testing and Simulation vs. Model Checking

In addition, model checking can verify both “safety” andvlihess” properties
(Item IVb). Safety properties are commonly examined in enridebugging practices and
testing and simulation can guarantee that safety asseittiold for the set of test patterns
considered (Item IVa). In practice a set of test vectors &snaun to discover minor and

obvious bugs before applying formal verification to find reédderrors. Verifying liveness

10
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properties are generally omitted in testing and simulatiecause a system simply cannot
be exhaustively tested through executions in a finite timewéVer, when an e-business
offers 24*7 services handling numerous service requdsssimportant to know that every
service request is eventually fulfilled and the non-stogesysdoes not go into an infinite
loop which precludes useful behaviors. Model checking canifyvliveness properties, as

we will explain later in details.

Moreover, testing and simulation are “around the systenpr@gches (Item Va),
which can be used by hackers to “reverse engineer” a victayssem. A “brute force”
attack is such an extreme form of testing and simulation.tédyslesigners and auditors
compete against hackers in a race to find critical test vec¢tmt may lead to system mal-
functions. They can improve their odds by using “direct ergi” techniques “through the
system,” such as formal verification (Item Vb). Although soformal verification tools can
be freely downloaded, their effective use still requirdsdacess to system resources (e.g.,
source code), access not generally available to hackec&elsacan only execute source

code but have no read/write privileges.

To achieve high level control and assurance, systems mustidgieally designed
to be testable and verifiable. Testing and simulation fiathily only occur after system
implementation is complete (Item Vla). Even though cerwdftware development like
fast prototyping supports testing before implementatz8i,[it is uncertain how much one
should rely upon the testing results of an incomplete systden claiming the assurance
of the entire system. Research on model checking howevesjders decompositidrand
localizatior? issues and suggests methods to modularize a system witbugoterfaces
that facilitate component-based verification. Formalfieation should and can be adopted

in parallel to system development to ensure every step isawid (Item VIb). Even though

2Decompose a property to several sub-properties.
3Select relevant states and state transitions local to g=ayierty that needs to be verified.

11
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proving the correctness of a system is complex, fortunatelge such a proof exists, it is

robust to re-examinations.

Auditors should promote the “design for testability andifigbility” in e-business
application development and help set up the policies andegires. If an application is
built primarily through integrating off-the-shelf softweapackages, internal auditors should
advise the procurement and IT departments to purchase geeskéth independent, credi-
ble assurance and help examine the integration processn-Rouse application develop-
ment, internal auditors should enforce designers/deeetofollow the “design for testabil-
ity and verifiability” policies and procedures. Later ontexal auditors can build upon the
internal auditors’ opinions to further investigate a syst@nd provide independent assur-

ance.

2.3 Industrial Applications of Formal Verification

Proving the correctness of computation (e.g., the Eudligdgorithm) is not new. Turing
was among the first to realize its importance. However, it m@suntil the 1960s and early
1970s that provably correct computation began to attracthmesearch attention [24]. But
industrial applications had to wait until 1994, when formatification was first used for the
verification of chip designs. After the discovery of the naias FDIV error of the Pentium
chip, Intel invested heavily in formal verification. Todawost players in the hardware
industry, like Intel, AMD, IBM, and Motorola, all have forrhaerification teams to work
on selected chip properties. Itis due to both the high coatgrbblem fix and the potential
legal liability after a chip is on the market; e.qg., Intel spever $400 million to recall its
Pentium chips and Toshiba paid $2 billion in an out-of-caettlement of a lawsuit against

its faulty design of a simple chip.

Formal verification in the software industry only began i®79 As might be ex-

pected, early applications were in mission-critical systdike telecommunications where a

12
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small bug can disrupt many services. Applying verificatiosaftware in general has been
promoted, but not well received. This is mainly due to theélatincentives for software
companies to provide rigorous quality assurance. Theyawrlysers and even hackers to
debug their software, after which they distribute fixes i@ Internet with almost no cost.
Ironically, software vendors can even get extra revenum fag fixes. It is not uncommon
to charge customers for upgrades that, apart from bug fixeside almost no extra func-
tionality (e.qg., the upgrades from Windows 95 to 98, and to) Moreover, software bugs
have not led to serious litigation threats. Vendors distlall warranties in their software
license agreements so that customers have no legal powegegdhem to provide quality
products. Of course, software vendors do not want to sellveoé that is too buggy to
use because of the fear of reputation loss and hew markeingsitiTheir common practice
is to use some testing and simulation to debug easy-tolaaticerrors and leave hard-to-
detect bugs to users. They often release “beta test” vergiba new product to recruit
free testers. But still, the initial release of a softwarefien rushed to the market without

thorough examination.

As more and more critical business applications are impteetkin software, we
suggest the use of formal verification for e-business assaraRather than relying on the
unwarranted promises of software vendors and in-houselapmrs, e-businesses should
proactively verify that their e-systems conform to the iiegments and will function well
in both benign and hostile environments. Auditors, pronmtioverseeing, and even prac-
ticing the use of formal verification, can help e-businesaagers and shareholders build

confidence in e-operations.

2.4 Formal Verification vs. Assurance Method Spectrums

Beginning 1960s, research on formal verification focusedarstructing proofs from ax-

ioms and inference rules in the same way as constructingemettics proofs. In the past
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four decades, formal verification has developed into a specof methodologies, ranging
from manual proof of mathematical arguments, interactweguter-aided theorem prov-

ing, to algorithmic and automated model checking [25] (FégR.2).

Hand proof of Model-checkers/

Mathematical Theorem-proovers Automata-based
Arguments procedures

- | | | -

More expressive power More automatior

Figure 2.2: The Formal Verification Spectrum

Manual proof of system correctness is very expressive mé-tonsuming, prone
to human errors, hard to verffyand often an order of magnitude bigger than the original
system. Hence, it is not economically viable to manuallywprthe correctness of a busi-
ness software, even for very small ones with few hundred lofecode. Computer-aided
theorem provers like ACL2are proof checkers designed to reduce human errors. But a
great deal of human expertise and manual hints are stillateedconstruct proofs and ex-
press them in a format acceptable to theorem provers. Itiadldiheorem provers do not,
in most cases, prove a statement false and provide little ihdbcating the cause leading
to a property violation. Therefore, theorem provers canbeotasily applied for business

software verification.

Unlike manual proof or theorem proving, model checking itomated and rela-
tively efficient in verifying system properties. Users onlyed to state system models and
properties to verify; verification is automatically done impdel checkers (Table 2.1, ltem
IIb). It is the automation that makes model checking ativadib business control and as-
surance because it does not slow down the pace of applicé¢ieelopment dramatically.

Developers can still strive for short “time-to-market” tdtut sacrificing quality. Moreover,

“The reliability of manual proof of mathematical argumeistdased upon peer review.
SACL2: A Computational Logic for Applicative Common Lisp.
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when a property does not hold, model checkers can help fgeh& scenarios leading to

the violation (Item IlIb) and hence facilitate system refirents.

By analogy, the assurance method spectrum (Figure 2.3% $p@m manual col-
lection of evidence and professional analysis, computieachecking, to automated veri-
fication. However, current auditing practices of systemeoleion, inquiry, document ex-
amination, data re-processing and analytical procedurgike manual proofs or theorem-
proving, cannot be considered as formal methods becaugedh@ot convey mathematical
certainties. But auditors can still straightly go for madéwrmal verification to rigorously
assure critical system attributes.

Manual collection  computer-aided =~ Model-checkers/

of evidence & checking automata-basec
professional analysis verification
- | | | -
More flexibility More efficiency and automation

Figure 2.3: The Assurance Method Spectrum

2.5 How Model Checking Works
2.5.1 Theory

Applying model checking to a system consists of three pryniasks:

Modeling Modeling converts a system description into a model accdeptea model
checker. Such a formal model is often described in a Kripkecgire M (AP, S, Sy, R, L)

where

1. AP is the set of atomic properties, properties that cambuddiately verified by

examining the current states, such aegedits = debits’ “ payment> 0,” etc.

2. Sis a finite set of states.
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3. Sy C Sis the set of initial states.

4. R = S x S is a transition relation that for every statec S there is a state’ such

that(s,s’) € R.

5. L: S +— 247 is a function that labels each state with the set of atomipgsitions

true in that state.

Intuitively, the Kripke structure is a directed graph, wdeodesS represent the
possible system states, edgeare the possible state transitions, and paths are the fssib
system executions. This modeling approach allows the uakgofithms in graph theory to

verify the system.

It is impractical to directly describe a Kripke structuresofarge complex system.
Fortunately, most model checkers can create Kripke strestautomatically from system

models. An automaton is a transformation of a Kripke stmctu

Most model checkers have their own modeling languages tlitéée verification.
These languages are easy to learn because of their signtapiopular programming lan-
guages like C. In addition, most model checkers have buitsinstructs (e.g., communica-
tion queues and message delays), which make the modelingtiabdted systems relatively

easy.

Specification Specification is the description of the desired system pti@se Tempo-

ral logic formulas should be used to specify concurrentsesys. Temporal logic is a
precise mathematical formalism that can express tempoogkpties, i.e., the ordering of
events in time, without introducing time explicitly [26].0F instance, LTL can describe
that a property expressed in formyteholds for “all time Gf),” “next time (Xf),” “even-
tually (Ff),” “until g holds (fUg).” Temporal logics can be classified according to whether

time is assumed to have a linear or branching structure. ETlLinear Temporal Logic,
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CTL is a branching-time logic called Computational Tree icpgnd CTL* combines both

branching- and linear-time operators.

Verification Verification is the process of checking whether the systerdethsatisfies its
properties. Given a Kripke structurd representing a finite-state concurrent system and
a temporal logic formulgf expressing a desired property, the checkind/s= f, i.e.,

whetherM is a model off.

There are four types of model checking: LTL, CTL, CTland automata-theoretic
model checking. We chose automata-theoretic model chgdlénause automata are more
expressive than LTL and are capable expressing eventaaktymptions not expressible in
CTL and CTL*. There are two classes of conventional automatautomata, which has
finite accepting runs, and-automata, where the accepting runs are countably infiviite.
chosev-automata because that can model the ongoing behaviortefisysand can express
not only state invariants but also eventualities; it aceépfinite executions, i.e., the inputs

of nonterminating processes.

Automata-theoretic model checking treats individual pssesP;, P, ..., P, as
separate state machings;, M, ..., M, ; the systemv-automaton is the product of these
processv-automata:M = M; ® My ® ... M,. A model checker also converts a temporal
logic formula f to a property automatoh'. Model checking verifies whether the behavior
of M is accepted byr'. The behavior ofM is defined in terms of its (nonterminating)
executions, each of the form = (zg,z1,...) Where eachy; = zp, * xpp, % -+ x 2,
Let the language oM, £(M), denote the set of all such behaviar®f M and letL(F)
denote the set of all sequencesccepted byf". Verification of M satisfying f consists
of proving the first language containmeft)M) C L(F'), which is equivalent to checking

thatL(M ® —F) is empty.

Although bothZ (M) andL(F') are infinite sets, it is possible to check the language
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containment in finite number of steps: constrid€t® —F and find the cycles in the finite
directed graph underlying/ ® —F. Although there may be an infinite number of cycles,
each cycle is contained in a strongly connected componethieigraph. Sincéd/ ® —F

is a finite state system, it has only finite number of such caompts and any (infinite)
behaviorz must describe a trajectory which eventually cycles withstrangly connected
component. Itis enough then to check that each stronglyestiad component is consistent

with the acceptance structure Bf and there are efficient automated methods to verify this.

The checkC (M) C L(F') requires searching a state space roughly of siZep
—F|. In other words, the computational complexity of this chéskinear to the size of
the state space of the analyzed system and to the size of glagéedeproperty automaton.

Decomposition and localization methods can further redlisecomplexity.

2.5.2 An Example — A Crossroad Traffic Control System

Next we explain how model checking works using a crossraatidrcontrol system, taken

from [21].

Modeling A traffic intersection system has three processes: AvehigoulevardB and
traffic ControllerC'. Figures 2.4 and 2.5 depict the states and state transftiopsocessA

andC'. Each of processl, B, C' has two states; hence, the system has eight states.

The traffic control system is one of the simplest systemsdhat with coordina-
tion of concurrent processes, but it can illustrate isshas may arise in larger systems.
Harmonic coordination is very important in distributed #simess systems. For example,
a ticket sale system that allows reservations from manytagenst ensure that the same

ticket cannot be reserved twice simultaneously.

In the diagrams, at each state of each process, there ar@ssibe outputs. State

transitions are described in Boolean predicates. One sestatle transition: of the system
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model M is;

X((STOP, STOP, g&\), (GO, STOP, gdA))
= A(STOP, GO) * B(STOP, STOP) * C(g8, go_A)
=(A:carswaiting)*(B:no_cars)+(B:carswaiting))*(C:ga.A)

(A:no_cars) +
(A: cars_waiting) * ~(C:go_A)

STOP {(A:no_cars), (A:cars_waiting)}

(A:no_cars) + .
(A:cars_going A (A:cars_waiting)*(C:go_A)
*(C:go_B)

GO {(A:cars_going), (A:no_cars)}

Q (A:cars_going) *~(C:go_B)

Figure 2.4: States and State Transition Diagrams for Psoesnue A.

(C: pause) +
(C:go_A) * ~(B:cars_waiting)

go A {C:pause).(C:go_A)}

(C:go_B) + c (C:go_A)*(B:cars_waiting)
(A:cars_waiting

o0 B{(C:pause), (C:go_B)}

Q (C:pause)+(C:go_B) * ~(A:cars_waiting)

Figure 2.5: States and State Transition Diagrams for PsoCestroller C.

Properties We define two properties: “no cars collide” (safety) and talts on each road

eventually get through the intersection” (liveness). Téraporal logic formulas are:
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1. G(—((A:carsgoing) * (B:carsgoing)))

G
G (((A:carawaiting) = F((A:no_carg + (A:caragoing)))*)
(

2 (B:carswaiting) = F((B:no_carg + (B:carsgoing)))

Figures 2.6 and 2.7 show the corresponding property autoiiagnd F». An
initial state, if exists, is designated by the arrow enggtime state. “+” marks a recur-edge,
meaning that any infinite path (through the transition $tmec of a property automaton)
crossing the edge infinitely often designates a behavioeied by the automatonF;
shows that every behavior @ff is accepted by except for “carsgoing” on both roads,
in which caseF; goes to stat@ precluding an infinite number of recur-edge crossings.
Every safety property can be modeled by such a 2-state atdong depicts the liveness
property; a behavior is accepted By unless on each road at some point cars are waiting,

and thereafter neither “noars” nor “carsgoing” on that road ever become true.
\G) else
1

(A:cars_going)
(B:cars_going)

2
Q true

Figure 2.6: Thev-automatonF; defining the safety property of “no cars collide.”

else else
(B:cars_waiting)

(B:cars_waiting)*
(A:no_cars) £ 4 (A:cars_waiting)* ~(A:cars_waiting) + gg ggr—scargi)n+~
(A:cars_going ~(B:cars_waiting) _going,

(A:cars_waiting)
else else

Figure 2.7: Thev-automatonF; defining the liveness property of “all cars on each road
eventually get through the intersection.”
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Verification We now verify the crossroad traffic control system satisfigth Iproperties,

i.e., L(M) C L(Fy)NL(Fy). As an illustration, we only verifyF, here.

To simplify, we decompose the task of verifyirfg into two local subtasks: “all
cars on Avenue A eventually get through the intersectiord Erewise for Boulevard B.

Figure 2.8 represents theautomatonF'4 defining the first subtask, and likewise fB.

else(+

1
( &Acgtr)s—f;gl‘? g{FA>1A: cars_waiting)

else

Figure 2.8: Thev-automatonF'4 defining the liveness property of “all cars on Avenue A
eventually get through the intersection.”

M is verified in the following steps:

L(M) C L(Fa);
L(M) C L(FB);
L(A)NL(B) C L(F)

Task localization replaces a system modélwith a simplified one by collapsing
those portions of\/ irrelevant to the performance of a task. SintandF4 do not involve
B, we can have &' = A® B'’®C’, where B’ and C’ are derived from B and C respectively
by collapsing every appearance of (B:__oars), (B: carwaiting) or (B: carsgoing) to (B:
null). Further, we can reducB’ (Figure 2.9) toB” (Figure 2.10). Now the verification is
reduced taZ(M") C L(F4), whereM” = A® B” ® C'. Once we prove&l (M) C L(F4)
it follows L(M) C L(Fp) because of the symmetry.

Unfortunately, the verification of (M") C L(F4) failed. It is possible that when

there are “carsvaiting” on A, C may select “pause” instead of “g§ and the system does
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() (B":null)

STOP {(B"null)}

(B’:null) < B’> (B:null)*(C:go_B)

GO {(B:null}

Q (B":null)*~(C":go_A)

Figure 2.9: State transition diagram for simplified procBssvith respect tal',4.

B” true

= {(B”:null)}

Figure 2.10: State transition diagram for further simptifigocessB” with respect tal'4.

not specify how long C pauses. Therefore, the model shoulthddified to forbid the

possibility that C may pause forever.

2.6 E-business Control and Assurance using Model Checking An E-Ticket
Sales Example

In practice, model checkers can automatically fulfill mamyification tasks: a user only

needs to describe processes and properties using a higllptegramming language and a

model checker automatically translates them into autormatbverifies the system. There

is no need to draw the state and state transition diagrams.

We demonstrate the feasibility of applying model checkingetbusiness control
and assurance through an e-ticket sales example [1], showigure 2.11. Although sim-
ple, the example embodies main characteristics of an eraystdistributed and parallel

processing, concurrency, asynchronous communicationsfraint resources, and non-stop
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operations. Many complex e-systems like online stock tigqdind e-retailing exhibit simi-

lar features.

Customer — Agent: wantto_buy, cancelres, pay
Agent — Customer: reserved, canceled, tickets, saldt,
try_later, toamany, tablefull
Agent — Ticket Server: reserve, get, cancel
Ticket Server — Agent: try_later, soldout, toamany,

tablefull, granted, sent, canceled

Figure 2.11: An E-ticket Sales Example.

2.6.1 Modeling

The e-business sells e-tickets in limited quantities oher Internet. The sales are im-
plemented by coordinating e-processes. The following laeehiree e-process prototypes
involved: Customer, Agent and Ticket Server. Each custfagent is an instance process

of the Customer/Agent prototype. There is only one Ticketv&eT.

Customer Customers purchase e-tickets through web browsers fromt@g€ustomers

can reserve, pay for tickets, and cancel reservations.

Agent Agents, implemented in Perl or Java, are the middlemen faliwa requests and
responses between customers and T. Agents are also rddpdiosi verifying customer
payments. A customer’s payment is accepted only after temer is notified about a
successful reservation. In case the payment is rejecteaiustomer’s agent would send a

“not_approved” message to the customer and the reservationdeledrautomatically.
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Ticket Server The database-implemented Ticket Server T centrally hdldiseae-tickets
and communicates only with agents. T keeps track of the ntsnifeavailable, reserved
and sold tickets, denoted asr, ands. Lett represent the number of tickets to be reserved
in a particular transaction. A new reservation is made# a. If a <t < (a+7r), T
responds “trylater.” If 0 < (a + r) < t, T responds “toamany.” If a = r = 0, T responds

“sold_out.”

To reduce the complexity of verifying the system, we madesshsimplifications

to exclude large uninteresting execution paths:

1. The system has a maximum two customers and two agentssifipéfication still
preserves the distribution, interconnectivity, concacgeand non-determinism of an

e-system.

2. Only one ticket is left for sale. This may appear to be aigant restriction however,
it retains the most interesting executions as most probkeisse only when supply

cannot satisfy demand.

3. Computing resources are limited. An agent can handletardyending reservations
and the communication queue of each process can hold onlynessage at a time.

This restriction is realistic because e-processes always limited resources.

4. Execution paths after Ticket Server’s “tigter” or “too_many” responses are not
considered because once these responses are delivereddastbmer, the system

state becomes the same as the state preceding the reservatio

5. Only one reservation cancellation is considered beampszaited cancellations do not

create new situations.
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2.6.2 Properties

There are both safety and liveness properties of the sysample safety properties are:

1. When the ticket server closes, the number of tickets splih® server equals to the

number of tickets bought by customers.

2. At all times the sum of the numbers of reserved, availahkd sold tickets always

equals to the total number of tickets.
Sample liveness properties are:

1. Every customer request is eventually responded to.

2. If customers reserve all the tickets and their paymemtsihapproved, the tickets are

eventually sold.

2.6.3 \Verification

We applied two model checkers, VeriSoft and SBlanhd verified the e-ticket sales system

in two stages — modeling both well- and ill-behaved custemer

2.6.3.1 Model Checkers Applied

VeriSoft was chosen because it can verify programs writte@/iC++, two of the most
popular languages. Auditors can simply embed safety @&ssgrin C/C++ code using

VS_assert() and model non-deterministic events usingdsS().

The biggest advantage of VeriSoft is that it allows the veaiion of an existing

C/C++ program with minimal modifications to it. This is impent because most current

Shttp://www.bell-labs.com/projects/verisoft/
http://netlib.bell-labs.com/netlib/spin/.
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programs are coded without formal verification. VeriSoft &g a handy tool for auditors

to perform add-on formal verification of client e-systems.

Moreover, VeriSoft has the minimal memory requirement heeat makes no at-
tempt to remember visited states. This gives flexibility &ua price, i.e., inefficiency due
to the need for visiting and verifying the same state repiatén extreme, VeriSoft may
fail to cover the complete state space in a reasonable tieteitthe state space is relatively
small. To limit the problem, VeriSoft provides V&bort to manually prune execution paths,

but this pruning makes verification less automatic.

Several other model checkers like SPIN avoid the revisiblgm by remembering
visited states and consequently require more memory dgp&amembering visited states
is only possible if the model checker knows the exact staeesgtructure. C/C++ are too
general to meet this specification. Therefore, these mduadkers usually have their own
languages to specify the system model, e.g., SPIN uses Rro8iece Promela is similar to
C, it was relatively easy to convert our C code into the Pramabdel. Promela is powerful
and efficient; the Promela model is richer than the C modeimetemented with fewer
coding. SPIN translates the Promela model into an intermalkié structure and searches

for paths leading to bad states or infinite loops.

Similar to VeriSoft, SPIN performs a depth-first search oa $tate space. But
at each state it only considers all possible transitions$ [#&d to not-yet-visited states.
SPIN can verify safety properties by checking the assestammbedded in the Promela code
and liveness properties by checking if all infinite exeautioops go through a “progress”
transition infinitely many times. For instance, a custon@ar keep reserving and canceling
reservations, causing infinite loops. A sophisticatedesysthould be designed not to serve
such a customer after a few reserve-cancel cycles. If ndfN 8Bn detect the infinite
cycling of reserve-cancel as a livelock unless the reseaveel transition is marked with a

“progress” label.

26

www.manaraa.com



VeriSoft can verify C/C++ programs because of its add-orufes. SPIN can
verify systems in any language but the system model has taitternvin Promela. In any
case, once the system properties are defined and expreskteeaystem/system model is
implemented, verification by model checkers is automatiidjent and worthwhile. For a

detailed discussion on how VeriSoft and SPIN differ, see [1]

2.6.3.2 Finding the Bugs

At stage one, we modeled the customer process as well-tith&veustomer makes one
reservation at a time; after a reservation, the customessvi@i the confirmation or rejec-
tion. In case of confirmation, the customer either pays ocelarthe reservation. No bugs

were found in this predictable, normal situation.

At stage two, we modeled somewhat abnormal customer beaama two bugs
were identified: 1) a deadlock occurred and shut down thesysthen a customer (hacker)
constantly made reservations, and 2) the property “evepyast is eventually responded to”
was violated when a customer wanting a single ticket madedg@rvations simultaneously

with two agents, a situation not unusual for Internet users.

VeriSoft and SPIN were both used at stage one. Only SPIN wet insstage two

because of its greater power and efficiency.

Deadlock When we modeled a hacker process which submitted resargationtinu-
ously, SPIN identified a design flaw resulting in a deadlocl&PXN, SPIN’s graphic tool,
helped pinpoint the scenario causing the deadlock (Figur2) 2

Process 0 initiated the agent, hacker, and ticket serverepses (numbered 1, 2
and 3 respectively). In state 46, the agent received thd thservation request from the
hacker. Since the agent had limited entry space in his raenvdatabase table to hold

pending reservations (only a maximum of two in our modelstate 58, he tried to send a
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“table_full” message to the hacker. The message was never readdeetteihacker, busy
sending out reservation requests, refused to process asyage in his communication
queue. In state 60, the agent received a “granted” messaetifie ticket server respond-
ing to the first reservation and in state 63, the agent triedotdy it to the hacker. But

this message cannot be sent because the hacker's comnmampatue was full (only one

message can be held in our model). Also in state 63, the tgg@er intended to send a
“try _later” message to the agent responding to the second réeervdreached the agent’s
communication queue but was not read because the agent ilvayisg to contact the

hacker. Simultaneously, the hacker wanted to send anatiservation request but failed
because the agent's communication queue was full. So the agd hacker were waiting
for each other in a deadlock. Two reasons for the deadloaiitdd resources (common for

Web businesses) and the bad design of processes failingndbehamulti-tasking.

Deadlocks are typical problems in distributed systems atd o find or reproduce
because they often occur in corner cases. We have seen #tdcles can result in unex-
pected system shutdowns. Hackers often exploit a deadtocRénial-of-Service (DoS)

attacks.

After analyzing this deadlock scenario, we introduced &iout” to break the loop
— an agent failing to send out a message within a period of wiidhandle another task.
With this addition the system can proceed even with such &engarocess. Similarly,
the system is also modified to ignore the hacker’s subseqesatvations if he does not
pay for the granted reservation within a reasonable timemé&Jout” is commonly used
in networking protocols but not often in e-business applices. This example shows its

importance.

Specification flaw SPIN also identified a minor specification flaw. The problerouned

in a corner case when the system has only one customer wha walyt one ticket but
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makes two reservations simultaneously with two agents #ritkets are sold right after

the reservations.

Agent A, handling the customer’s first reservation, corstélog ticket server imme-
diately. Knowing that no more ticket is available, A quickigtifies the customer. Hearing
the bad news, the customer leaves the system disregardiagdiher reservation to Agent
B. During this period, B, unfortunately overloaded or bledk does not notice the cus-
tomer’s request. When B does notice and forwards it to thetigerver, the request remains
unresponded because the server closes when the system imasentickets or customers.
This violates the property “every request is eventuallypoesied to.” To accommodate such

a situation, we redefined the specifications.

Our uncovering these flaws in the simplified system model tshaod. VeriSoft
considered 331,078 system states and the verificationinmgiom a low-end 400 MHz Intel
Xeon server, took about only half an hour. SPIN, which is aemwowerful tool, found
the problem in seconds, once the model has been expresseRiNis $anguage. This
demonstrates both the complexity of e-processes and thibildg of using model check-
ing. Model checking can yield measurable business reitplidr a reasonable amount of
effort. Traditional auditing methods, in contrast, candhaido so. Physically observing
system behavior is impossible because of fast transaghieedsand potentially large trans-
action volume. Inquiring employees, including designers developers, will not uncover
the aforementioned flaws, because they should have progedrttme countermeasures if
they had known. Examining documents or reprocessing dateeactive methods, too late
to prevent these flaws from resulting in negative impactsalytical procedures are limited
and time-consuming to pinpoint the execution paths leatbrnifpe bad states, considering
over 300,000 states in even such a simple model. Only modslkatg can provide the

confidence that e-businesses desire.
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2.7 Conclusion

In the digital economy, software applications largely deiee how businesses live their
digital lives. For those e-processes which have become rfiesband nerves of an e-
business, their correctness is crucial. Fortunately,ptasisible in both theory and practice
to mathematically verify the correctness of e-processesdéichecking, an automated and

efficient formal verification method, can perform such a tiorc

Our research brings a method from another discipline toracbvahe field of au-
diting in the context of critical e-commerce systems. Asitiugl moves from a reactive
ex-post audit process to a proactive continuous one, wederéhat model checking will
become a valuable and practical tool. It is rigorous bec#usan verify system correct-
ness under all circumstances. If used correctly, modelkihgcan help locate and correct
hard-to-anticipate but potentially crucial flaws that afeei impossible to identify using

conventional control and auditing methods.

Applying formal methods in auditing is not new. TICOM [27] sva formal method
to analyze accounting information systems and detect @ogmtoblems. Model checking is
much more powerful and efficient for analyzing general infation systems. For critical
e-systems, it should be an essential part of internal cloauticha supporting tool of external

assurance.

The auditors have many key advantages in applying modekaiwec

1. their potentially strategic roles in advocating formatification to the management

and revolutionizing e-business development practices;

2. their experience with business processes and profed®gpertise in defining rele-

vant and complete system properties;
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3. their well-established reputation for competence addpendence in providing cred-

ible trust services.

Although model checking is powerful, it has limitations. & checking can
guarantee system correctness with regard to certain \@eiffroperties but it is difficult
to provide assurance over the entire system. Limiting factaclude: the complexity of
business systems, the difficulty of system modeling, thédithexpressiveness of formal
presentation languages, and the complexity and cost ofmureasoning procedures. To
combat these limitations, there are ongoing researchek,asion machine-checkable log-
ics of authentication [28], security property specificatimf e-commerce protocols [29],
and testbeds to experiment how to assist people withoutitigaiin formal techniques to

effectively apply model checking in business[16].

In summary, this research helps to eradicate two of the thmeetice barriers” to
internal control quality assurance [30] — the lack of adégjgateria for measuring internal
control quality and the lack of methods for auditing a precé§le suggest auditors first ap-
ply model checking to mission-critical and pervasive bassapplications (e.g., significant
financial trading processes and essential building bloocke{commerce applications) and
focus on the critical properties (e.g., by analogy, in theafdic case, the strength of steel
rather than the color coordination of decorations). Audittan outsource the verification
over hardware, operating systems, application developtoels and commercial business
systems like SAP, to computer specialists but instead foauhe verification of business
applications unique to the client. Although reliance andependence issues will arise,

such a practice is not impossible.
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Figure 2.12: A scenario in the e-ticket sales example caas#gsadlock. The figure is

based on a Message Sequence Chart window of XSPIN. Veiitieal tepresent processes,
boxes represent states. Messages are labelled by “reggikiicess!request/reply, sending
process, and other information.” If a message is only sehinbuer received, i.e., the

message is taken out of the communication queue and reacebedthiving process, the
label appears near the sender. Otherwise, an arrow goesteosender to the receiver and
the label is near the arrow.
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Chapter 3

Buy-price English Auction

Abstract

Consider an English auction for a single object in whicheheran option for a bidder to
guarantee a purchase at a seller-specified buy prteany time. We show that there exist
© andv (> v), such that a bidder purchases at the buy price immedidthlg i/aluationv

is no less tham orv < v < v and at least one other bidder is participating in the auction
b <w < v, he purchases at the buy price once the current bid reacledegially chosen
threshold price. A properly set buy price increases explesxteial welfare and the expected

utility of each agent when either buyers or seller are rigkrse.

3.1 Introduction

The popularity, scope, and competitiveness of online ansthave encouraged auctioneers
to innovate. Particularly noteworthy is the use of a buy giiit English auctions where
the seller announces a maximum bid level, at which any biddarimmediately win the
auction. Since the start of such auctions in 799Bere has emerged a significant portion
of sellers who choose to utilize buy prices [31,3%or example, our preliminary study of

over seven thousand sports rookie card auctions at Yahagests that about half of the

Lyahoo! started offering auction sellers the option to zilbuy prices in 1999 whereas eBay implemented
its version of the buy price practice in November 2000.

2The list of data on the proportion of auctions with buy priceBay 2001 data shows 30% in 1Q 2001,
35% in 2Q 2001, and 45% in Dec 2001 [32]. 40% on eBay and 66% bdidfain 2002 [31]. 37% on Bid or
Buy in 2001 [32].
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auctions utilized buy prices and that approximately onetfoaf them ended with bidders

exercising that option.

Wang [33] shows that an auction yields higher expected rsefi¢enue than a
posted-price sale when the auction is costless. Auctioaiipe is very affordable, and
its popularity indicates that many sellers have recognthedsuperiority of auctions over
posted-price sales. Then why would the seller prefer toigpamosted price when dy-
namic pricing is in play and consequently restrict her maximpayment? Should bidders

also favor buy prices? If so, what are their equilibriumtstgges for such auctions?

Before addressing these issues, we need to clarify the araegof buy prices.
Currently, there are three types of buy prices: “permah&etnporary,” and “limited.” A
permanent buy price remains valid during the entire coufsheoauction. Yahoo!'s “buy
now,” uBid’s “uBuy It,” and Amazon'’s “Take-It" prices all fainto this category. Notably
missing from this list is eBay, which offers only a tempordbuy-it-now” feature that
disappears as soon as any bid is made at or above the reser/efpbuy price is limited

if it is valid only for a restricted period of time during thectior?.

This paper focuses on the study of permanent buy prices bedhaey allow for
an ultimately hybrid model combining posted-price sales anctions. For simplicity, we
generally refer to the “permanent” buy price as the buy piricéne following discussions,

and we specify other types explicitly.

Budish and Takeyama [34] are the first to have recognizedaheflis of buy prices.
Using a simple two-bidder, two-value model, they concludat tvith a properly set buy
price, the seller facing risk-neutral buyers earns the satpected profit as in a standard En-

glish auction, but the seller facing risk-averse buyeraghigher expected profit. Reynolds

For example, labx.com, specializing in the auctions ofrdifie equipment, requires that “an Auction Stop
bid must be entered 48 hours prior to the auction close or tiwién Stop feature is dropped and the auction
continues to the ending date specified.”
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and Wooders [31] confirm this result in a model of two biddeithwniform distribution.

But Budish and Takeyama [34] express doubts about the eateaktheir results
to a general setting. They conjecture that “in a more geriexalework withn valuations,
the optimal buy price may be less than the second-highesatiah, which admits the
possibility of inefficient outcomes. In this case, revengaigalence breaks down and the
effectiveness of the buy price to enhance sellers’ profitswiidders are risk-averse may

be diminished.”

We show that Budish and Takeyama’s doubts are unfounded. riVe phat, in a
setting ofn bidders with arbitrary continuous value distribution, ibay price is properly
set, revenue equivalence still holds when agents are éskal, and the buy price still
enhances sellers’ profits when bidders are risk-averse. Wkef prove that if neither
sellers nor bidders are risk takers, an English auction angmad with a properly set buy
price weakly dominates the standard English auction. Andersarprisingly, a buy-price
English auction not only increases the expected socialanesltbut also ensures that the
expected utility of each agent is never lower than it is inamdard auction. Particularly
when either the seller or buyers are risk-averse, the Sedigpected utility is strictly higher

than that in a standard auction and without lowering the tslyxpected utilities.

Utilizing buy prices in auctions can be viewed as providirfgran of insurance for
risk-averse buyers. If these buyers’ valuations are allowvéuy price, they can bid the buy
price to achieve a fixed profit instead of taking the risk ofrigsthe item when bidding
below the buy price. These buyers would pay premiums fordingithe risk. Similar to
how insurance companies make money, the seller utiliziiygpoices profits by exploiting
the risk aversion of these buyers. But unlike insurances#fier does not have to be risk-
neutral to benefit from buy prices; a risk-averse seller @n gven more because utilizing

buy prices reduces the variance of seller revenue.

To prove the superiority of a buy-price English auction, veeadto define buyers’
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equilibrium strategies. We will prove that a unique Bayediash equilibrium exists for
buyers when there are unique reference pairasdo (v < 0, and both above the buy price)
so that a bidder with a valuation between the buy price @aimgla threshold bidder who
exercises the buy price once the current high bid reachasiagitally chosen threshold
price, a bidder with a valuation betweérand¢ is a conditional bidder who bids the buy
price immediately on the condition that at least one compgedbidder bids at or above the
reserve price, and a bidder with a valuation above an unconditional bidder who selects
to purchase at the buy price instantly with no conditions.Wileprove that a lower bound
exists so that if the buy price is at or above this bound, thidridders with valuations above
the buy price are threshold bidders. In this case the auidiefficient; it guarantees that the
bidder with the highest valuation wins, because a bidddr avltigher valuation has a lower
threshold price. Moreover, the more risk-averse a bidtderldwer his threshold price. The

seller thus has higher expected utility from risk-aversgelosithan from risk-neutral buyers.

The paper proceeds as follows. In Section 3.2, we lay out théein state and
prove the bidders’ unique Bayesian Nash equilibrium sgiate We also compare behav-
iors of bidders with different degrees of risk aversion. kton 3.3, we prove that both
risk-averse and risk-neutral bidders are not worse off imgfdrice English auction. We
analyze the impact of the seller’s risk preference on theofidrly prices and prove that
the seller is never worse off utilizing properly set buy pac We also derive the lower
bound of a properly set buy price. Section 3.4 provides muidtions about our results

and recommends future research directions.

3.2 Bidders’ Equilibrium Strategy
3.2.1 The Model

There is one seller and bidders in a buy-price English auction of an indivisible doo

Only bids at or above the reserve price are valid, and therdedis committed not to relist
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the item if no valid bid emerges. This no-resale constrara standard assumption and
is naturally satisfied in cases of perishable or time-sieasgoods like flowers or tickets.
We also assume bidders have independent private valuafibisassumption is restrictive
but is closely emulated by auctions of collectibles or useadg. Our empirical study also
supports such an assumption because the data show thatpodstreokie cards purchased
through auctions are for collection rather than for resakleiyers seldom resell the cards

they have just purchased.

To simplify the analysis, we use a “modified English clocktar®’ as our model,

which has a set of rules as follows:

e The seller announces both a reserve price and a buy priceshidf® auction starts.
The auction starts at a pre-announced time with the auctmrk deing set at the
reserve price. Each bidder controls two buttons: a “bid'tdutand a “buy” button.
A bidder signals his willingness to pay the current clocketby pressing and holding
down his “bid” button. Once a bidder releases his “bid” baftbe quits the auction
and can no longer return. A bidder does not know how many diildelers participate
in the auction. At any time, a bidder can press his “buy” butmnaling that he bids
the buy price. A bidder can start signaling his actions evemtly before the auction

starts.

e Atthe start of the auction, the auctioneer checks the stdiglders’ buttons. If only
one “buy” button is pressed, the auction ends and the biddher as pressed his
“buy” button wins, paying the buy price. If more than one “buputton is pressed,
the winner is randomly chosen among those who have pressiedtiby” buttons.
If none of the “buy” and “bid” buttons is pressed, the auct@ms without a sale. If
there is no “buy” button being pressed but one “bid” buttohdig held, the auction

ends and the bidder who holds his “bid” button wins, paying thserve price. If
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there is no “buy” button being pressed but more than one “bidton being held, the

auction clock starts ascending from the reserve price.

e The auction terminates when one of the following scenargusiio 1) There is only
one bidder left holding his “bid” button. This bidder winscapays the current clock
price. 2) There is a bidder who has pressed his “buy” buttohis Bidder wins,
paying the buy price. When more than one bidder have predsetbly” button
simultaneously, the winner is chosen randomly among themd 3) The auction
clock reaches the buy price. The winner is chosen randombngrthe bidders who

hold their “bid” buttons, and the winner pays the buy price.

3.2.2 Proof of Bidders’ Equilibrium Strategies

In a buy-price English auction, for a bidder with a valuatielow or equal to the buy
price, his pure and dominant strategy remains the same astandard English auction,
i.e., to bid up to his valuation. However, the strategy sface bidder with a valuation
above the buy price becomes more complicated. When theraudtiple bidders with such
valuations, the winner will be the one who first commits to Ity price. If such a bidder
thinks that at least one other bidder exists who might bidbtineprice, he would find the
appropriate moment to bid the buy price before any otherdsidid he thinks that there is
no other bidder who might use the buy price, he would simpgpkeidding. Consequently,
there is no dominant strategy for such a bidder; we could bope to find a Bayesian Nash

equilibrium.

To find such an equilibrium, we first need to characterize@dkjible pure strategies

that a bidder can follow:

e Traditional Bid up to his valuation;
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e Threshold Keep bidding until winning or his threshold price is readhénce the

auction clock reaches his threshold price, bid the buy pnceediately.

e Conditional Bid, but use the buy price immediately if at least one othddér bids

at or above the reserve price.

e Unconditional Bid the buy price immediately with no conditions.

We can unite the above four strategies under a “generalireghold strategy” in
which each bidder has a threshold price that determinesdifvamen the bidder uses the
buy price. If the buy price is above a bidder’s valuation, gemn uses the buy price and
hence we can assume he has a threshold price above his ealudie can regard that a
bidder following the traditional strategy as having a thiad price equal to the buy price.
A bidder following the threshold strategy has a thresholdepdependent on his valuation
and the buy price (as we will show later). A bidder followirgetconditional strategy can
be regarded as having a threshold price equal to the resgced, and a bidder following
the unconditional strategy can be regarded as having abiceprice less than the reserve

price, say, the lowest bidder valuation.

Letr denote the reserve price althe buy price. Let us assume bidders’ valuations
are drawn randomly from the same cumulative probabilityrithigtion F', which is strictly
increasing and differentiable over the support of biddduatons, [v,v]. Let f = F’
denote the probability density. Leix) denote the bidder’'s von Neumann-Morgenstern
utility function, wherex is the difference between the buyer’s valuation and his gagnf

he wins and is zero if otherwise. Letp) denote the seller’s utility when she sells the item

4Conditional bidders use the buy price immediately upomiiegrthat they have competition thus they can-
not obtain the item at the reserve price. They are diffenemhfunconditional bidders, because unconditional
bidders give up the chance to obtain the item at the reseiwe, fout in exchange, they are guaranteed to win
over any conditional bidders. Conditional bidders obsehesauction clock and bid the buy price as soon as
they notice the auction clock departing from the reserve.
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and receives the payment Both u(x) ands(p), we assume, are linear or concave, twice
continuously differentiable, and strictly increasing.t g be the seller’s valuation for the

item, assuming:(0) = s(vs) = 0 andu/(0) = s'(vs) = 1.

The following theorem defines the bidders’ unique BayesiaatiNequilibrium (see
Figure 3.1):

Theorem 3.1 A buy-price English auction has a unique Bayesian Nash ibgiuin deter-
mined by constant§ and ¢ and functiont, b < v < © < 7, such that all bidders with

valuationv have the following strategies:

e Use the traditional strategy if < b.

e Use the threshold strategy with a threshold price, b) € (r,b] if b < v < v, where
t(v, b) is the threshold function defined by the differential ecprati

u(v —t(v,b) - Fr=Y(y)

aw—b) G Tonwy ~ O tbb=-1 b =b

e Use the conditional strategy if < v < 2.

e Use the unconditional strategydf< v.

All bidders withv > b follow the threshold strategy, i.et, = © = w, if and only if

lim ¢(v,b) > 7.

V—v

PROOF We need to obtain the necessary and sufficient conditians fo and? to deter-
mine a symmetric Bayesian Nash Equilibrium. First we assymgand? determine a pure
strategy equilibrium. Under this assumption we calculatielérs’ expected profits corre-
sponding to the different strategies, praye, b) is both strictly decreasing and continuous

in v whenb < v < o, and show how to computgv,b). We then prove such guv,b)
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Figure 3.1: Bidders in a buy-price English auction followeaf the four equilibrium strate-

gies dependent on their valuations.

indeed corresponds to a uniqgue symmetric Bayesian NashiliEagum. Further, we prove

the existence of unique reference poitsnd? and show how to compute them.

Since we are concerned with strategies for a bidder withb, let us first calculate

such a bidder’s expected profit under the three differeategies:

1. Under the unconditional strategy:

A bidder using the unconditional strategy competes onlywiher bidders using the same

strategy. The probability that a bidder uses the unconditistrategy isl — F(¢), and

the probability that there are exactty— 1 other bidders { < k£ < n) who also use the

unconditional strategy i Z:})(l — F(9))*~1F"*(%). Hence, an unconditional bidder’s

expected profit, denoted By, (v), is

Iy(v) = Z (Z: 1) (1- F({)))k—an_k({))u(vk— b)

k=1
— ﬂuv_ _“(”_b)n_l k(g

2. Under the conditional strategy:
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A bidder using the conditional strategy wins if 1) there anaunconditional bidders and 2)
he is chosen randomly among the conditional bidders whdigithtry price simultaneously.
A conditional bidder pays if there is another valid bid and paysf there are no valid bids.

Hence, a conditional bidder’s expected profit, denotedllby), is

He(v) = kZZQ (Z: D (F(0) — F(@))k—1Fn_k(6)u(vk— b) .

u( - b)(F"—1<~> — ) +u( — ) )

(3.2) = Zpk VFEL(5) 4+ (u(v — ) — u(v — b)) "L (r)

3. Under the threshold strategy:

A bidder with a threshold price wins and pay$ if there are neither unconditional nor
conditional bidders and he is chosen randomly among thehhbte bidders who bid the buy
price simultaneously once the current high bid reagheAlternatively, he wins and pays
the second-highest bid (or the reserve if he is the only iddn a valuation at or above
the reserve) if all other bidders have valuations belowetG,,_; (p) be the probability that

a bidder with a threshold prigeexercises the buy price and wins the auctiok threshold

bidder’s expected profit, denoted bly(v, p), is
P
(3.3) IL(v,p) = u(v — b)Gp_1(p) + / u(v —x) dF"1(2) + u(v — r)F"7L(r)

We now establish two properties of the threshold functianb). To simplify the notations
in the following proofs, we definefor the full range of bidder valuationg(v, b) = b when

v < b, t(v,b) = rwhenv < v < v, andt(v,b) = v < r whend < v.

Proposition 3.2 ¢(v, b) is strictly decreasing in for b < v < 2.

SIf multiple bidders use the same threshold pricéhe winner is selected randomly among them. This will
be reflected in7,.—1(p). Later we prove that in equilibrium there is zero probapithiat multiple threshold
bidders share the same threshold price.
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PROOE See Section 3.5.1m

Proposition 3.2 implies that for any threshold prige < p < b, there is at most one bidder
valuation corresponding to the equilibrium threshold @yici.e., there is at most ones.t.
t(v,b) = p. Thus in equilibrium it is impossible for two threshold b&td to have the same
threshold price. This allows us to expreSs_;(p), which denotes the probability that a
bidder with threshold price uses the buy price and wins. It occurs if no one else has a
threshold price lower thap, excluding the case where the bidder wins without using the

buy price because everyone else has a valuation lesgthan
Go1(p) = (1= Prob(t(v,b) <p))""" = F""(p)

DefiningT'(p) = Prob(t(v,b) < p), we can writeG,,_1(p) as

(3.4) Gnoa(p) = (1= T(p))" " = F""'(p)

Note thatt(v, b) strictly decreasing fob < v < v implies that7'(p) is continuous and
strictly increasing fon < p < b, which in turn implies thatz,_;(p) is continuous and

strictly decreasing for < p < b. This can be used to prove the following proposition:
Proposition 3.3 ¢(v, b) is continuous i for b < v < .
PROOF See Section 3.5.2m

Note that the equilibrium threshold function cannot combinsly drop to the re-
serve price if there is a positive probability that there ewaditional bidders. This is be-
cause a bidder with a threshold slightly above the resermeswatch to the conditional
strategy, thus increasing his chance of winning by more ¢hfixed positive amount while

his payment conditional on winning would hardly change.
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Using the above two propositions we can now have the follgvgiropositioi.

Proposition 3.4 Any threshold price functionv, b) corresponding to an equilibrium sat-

isfies the following differential equation:
Fn—l/(v)

u(v — t(v,b)) B . -
R T DT

O1t(b,b) = —1, t(b,b) = b

(3.5)

PROOE In equilibrium, when all other bidders follow the thresti@trategy determined
by ¢, the optimal threshold price of a bidder with valuationdb < v < ) is t(v,b),
i.e.,p* = t(v,b) maximizesll;(v, p). Differentiating a threshold bidder’s expected utility
function (3.3) inp, we get

aHt(U,p)

o u(v = b)G,_y (p) +u(v — p) "V (p)

(3.6)
DifferentiatingG,,—1 (p) gives
L 1(p) = —(n— 1)1 = T(p)" T’ (p) — F"V(p)

Becauset(v, b) is strictly decreasing and continuousdrwhenbd < v < 9, its inverse

function in the first variable, denoted hy(-, b), exists:
t(w(p,b),b) =p
Usingw, T'(p) can be expressed as
T(p) =1— F(w(p,b))
and we have

f(w(p, b))

T0) = =5 0.5

bIn the interest of simplicity, we assume thais continuously differentiable in both variablesandb so
long as it is above.
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ReplacingT'(p) andT”(p) in G/, _,(p), we get

nm1(p) = W—DFW%m,wbéggﬁ%ﬁ‘F“Wm

F* (w(p,b))

_ WY -1/
= i L

Therefore, we have

Fr=Y(w(p, b))

Ol (v, p)
t(w(p,b),b)

- )

— ulo-pF )+ uto - )

Forv > b, dividing the above equation hy(v — b)F™~ ' (p) > 0 preserves its sign, and we

get

up=p) . Fr=(w(p,b))
u(v —b) O (F"1ot)(w(p,b),b)

3.7)

Whent is the equilibrium threshold function, i.ea} = t(v,b) andw(p*,b) = v, (3.7) is
zero:

=0

u(v — t(v, b)) Fr=(y)
u(v—0) bt O (Fm=tot)(v,b)

Forv = b, t(v,b) is continuous i andt (b, b) = lim,~4t(v,b) = b. By our assumptiory,

is continuously differentiable. Applying the L'Hospitalfule, we have

. u(v —t(v,b)  uw(0)(1 = 0it(b,b)) B
R 0) =1-oit(bb)

We can use this to take the limit in (3.5) as\, b to obtaino;t(b,b) = +1. Sincet is
decreasing;t(b,b) = —1 must hold. m

Equation (3.5) is an ordinary differential equation fdr, b) with the boundary
condition¢(b,b) = b. The equation always has a unique solutiort(ef b). Although
we cannot express the general solution explicitly, bidderpractice can apply (3.5) to
calculate their optimal threshold prices once the charatiss of an auction (e.qg., bidders’

value distribution, utility functions, and the seller’sybprice) become known. We will

45

www.manharaa.com




demonstrate the use of (3.5) when a bidder has Constant utbRisk Aversion (CARA)
utility [35].

Also using (3.5) we can further verify Proposition 3.2. @ingv — t(v,b)) >
u(v — b), from (3.5) we get

Fr= () u(v = t(v,b))

Fr=(t(v, b))dy t(v, b) ww-p "

which impliesd; t(v, b) < 0.

Now we prove that the threshold function defined by (3.5) & Iblest response

threshold value.

Proposition 3.5 Lett be the function defined by (3.5) afid> b satisfy that for allx < ©
thatt(x,b) > r. If all other bidders with valuations;, b < x < v, follow the threshold
strategyt(z, b), then the optimal threshold strategy of a bidder with valuab, b < v < 7,

is to uset(v, b) as his threshold price.

PROOF To show that(v,b) = p* maximizes the expected profit of a bidder witl{p <

v < D), it is enough to show tha‘-?% is positive ifp < t(v,b) and is negative when
p > t(v,b). From the detailed proof in Section 3.5.3, we Betv, p) strictly increasing for
all p € (r,t(v,b)) and strictly decreasing fgr € (t(v,b),b). This proves that, as long as
all other bidders use the threshold strategy— ¢(v,b) maximizesll;(v, p) for a givenv,

b < v < v; that is, the optimal threshold price of a bidder with valoaw is t(v,b). =

Corollary 3.6 If t(v,b) defined by (3.5) satisfies
lim t(v,b) > r
then it is an equilibrium that all bidders with valuation > b use the threshold strategy

with ¢(v, b) as their threshold price.
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PROOF Proposition 3.5 withb = ¢ = 7 shows that a bidder cannot improve his profit
by using a different threshold strategy. We now show thatdmnot improve his profit by
switching to either the conditional or the unconditionahttgies. To do so, it is sufficient

to show
I (v, t(v, b)) > u(v — r)F" 1 (r) + u(v — b)(1 — F*1(r)) > u(v —b)

The middle of the inequality above is the bidder's maximurasiigle profit using the con-
ditional strategy: a conditional bidder reaches his maximmossible expected profit when
he paysr if everyone else has a valuation belovand pays otherwise. It is higher than

the maximum profit possible using the unconditional stgtednich isu(v — b).

When all other bidders follow the threshold strategy, bypgesition 3.5, we have
Ht(va t(’U, b)) > lim Ht(vvp)
p—T

and using (3.3) and',,_1(p) = F"1(9) — F""1(p), we havezl)iig (v, p) = u(v—"b)(1—
Frl ) +u(v —r)F"7H(r). m

Corollary 3.7 If t(v,b) defined by (3.5) satisfies

lim t(v,b) > r

v—v

then the bidder with the highest valuation wins. When thetsugnd seller are risk-neutral,

the buyers’ and the seller’s expected profits are the same astandard English auction.

PrRoOOF By Corollary 3.6, iflim,_5 t(v,b) > r, all bidders follow the threshold strategy
with threshold prices strictly decreasing with their valoas. Hence the bidder with the
highest valuation reaches his threshold price first and Wiasauction. By the revenue
equivalence theorem [36, 37], a buy-price English aucti@hdg the same expected rev-

enues as a standard English auction when the buyers andltvease risk-neutral. m
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Corollary 3.6 shows that whelim,_.; t(v,b) > r, it is an equilibrium for all
bidders withv > b to follow the threshold strategy, i.ev, = © = v. Now we need to

provev < v whenlim,_ t(v,b) < r.

We can calculate the equilibriurih and v using (3.1) and (3.2). First, find the

equation that gives for a givend.

One of the following must be truetl, (v) > II.(v) for all v > o (only use the
unconditional strategy)l,(v) < Il.(v) for all v > v (only use the conditional strategy),

or ¢ satisfiesII,(v) = II.(?) (use unconditional or conditional strategy respectively i

different value ranges). The last case leads to

u(v —r)

n—1
k(5 _ n—k-1 M) =n _ n—1 r
(3.8) 3 P - P ) (ho=p V')

For a giveno, the right-hand side above is strictly decreasing,imvhile the left-hand side
is strictly increasing. Therefore, there is either one ugig or no ¢ solution ¢ > v). If

there is nav solution, then for alb > ¢ eitherIl,(v) < IL.(v) (i.e.,o = v) satisfying

n—1 .
(3.9) > (1= P @) < "(ZE; = 8 1) F i)
k=0
or I, (v) > Ie(v) (i.e.,® = 7) satisfying
n—1 B
(3.10) > FHO) = PN @) = n(iﬁiﬁi - Z; ~1) )
k=0

Definelly(v) = max{Il.(v),II,(v)}. v is the valuation limit where bidders switch
from the threshold strategy either to the conditional oruheonditional strategies; thus,
IT;(o,t(0,b)) = I4(0). Since both sides are continuous, in order to demonstratdttare

is a solution to this equation, it is sufficient to show thiato, ¢(v, b)) is greater for — b,
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threshold utility(II;)
- - - - conditional utility (IL;)
----------- unconditional utility(IT,,)

Expected utility

0] 0

bidder’s
valuation

Figure 3.2: The relationship among the slopes of the thrpe@rd bidder profit functions
under the threshold, conditional, and unconditional egias guarantees the existence of
uniguev andv. For simplicity, we depict the functions as linear. In rgalthey are non-
linear.

butTly(0) is greater whem is large, s.t.t(9,b) — r. First consider the case whefre— b:
11}1{1}) II,(0) =0
lm T1(3) = (b= )"~ (r)
b
L 15,17, 1)) = / (b — ) dF" (@) + (b — 1) ™ (1)
which shows that fob — b, I1;(9, ¢(v,b)) > I14(0) holds.

Let v, satisfyt(v;,b) = r. Note thatv, < T exists here becausen,_.; t(v,b) <

r. We have

lim TL(9,4(5,0)) = (u(ve — 1) — u(ve — b))F" 1 (r) + u(vy — b)F" (v,)

V—vg

S Hc(vx) < Hd(vw)

Therefore, there existsac (b, v,| satisfyingll;(v,t(v,b)) = I14(0) andv < .
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To show thaty andv, together witht, correspond to an equilibrium, we will use the
following inequality (see Figure 3.2), which follows egsfrom equations (3.1-3.3) and
the concavity ofu:

8Ht(v7p)

(3.11) I, (v) > T (v) > =

forallv >bandr <p<b

Intuitively we can think that a bidder’s chance of winningcoeases in the order of using
the unconditional, conditional, and threshold strategigse marginal expected profit from
the unconditional strategy is the highest followed by theditional and then the threshold
strategies. In addition, a bidder’s utility conditional winning the auction is the smallest
in the unconditional strategy, followed by the conditioaat the threshold strategies. Thus

the above inequality holds.
Inequality (3.11) implies that for afl, IT; (v, p) — I14(v) is non-increasing in. For
anyv < o,
Ht(’U, t(U, b)) - Hd(v) > Ht(va t(f)a b)) - Hd(v) > Ht(ﬁv t(ﬁv b)) - Hd(ﬁ) =0

which implies that bidders with valuation belancannot improve their expected utility by

switching to the conditional or unconditional strategiesr anyv > v and for anyp,
(v, p) = a(v) < (v, p) — Ha(0) < Iy (0,4(2,6)) — Ha(v) = 0

which implies that bidders with valuation abovefollowing the better of the conditional

and unconditional strategies, cannot gain by switchingttoeshold strategy.

Inequality (3.11) also implies th&t,(v) — II.(v) is non-decreasing. Therefore, if
I, () = II,(0), then for allv € [9,0) bidders prefer the conditional strategy and, for all
v > ¥, bidders prefer the unconditional strategy. If there isonat satisfiedI,(v) =
II.(d), then either (3.9) or (3.10) holds (i.e., one of the two sga#s is always strictly
better than the other).

Now we have shown thdt o, ands indeed determine an equilibriumm
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We can prove that and¢ are unique and the equilibrium described in Theorem 3.1es th
only pure strategy symmetric equilibrium of a buy-price Esfgauction. The proof is not
difficult and uses similar techniques as in the proof of TeeoB.1. Since the proof does

not provide any more economical insights, we choose to dnmitthis paper.

3.2.3 Threshold Prices and the Bidders’ Degrees of Risk Aveion

Now we examine the relationship between a bidder’s threlshte and his absolute level
of risk aversion. Assuming that the bidder’s valuation ishanged, the following theorem
proves that the more risk-averse a bidder, the lower hisltiold price. In other words, the
more risk-averse a bidder is, the sooner he would use therimgyip order to avoid the risk

that someone else may use it first.

Theorem 3.8 Letuy, us be concave or linear utility functions;, ¢, be the corresponding
threshold-price functions, angy = —u}/u}, aa = —ufj/ul, be the absolute level of risk

aversion. lfa; (z) < as(x) for all x > 0, thent; (v, b) > t2(v,b) for all v > b.

PROOF Prove by contradiction: assume that forall> 0, a1 () < as(x), but there exists
B > bsuch thatt;(3,b) < t2(5,0). Leta = max{v : v < B Ati1(v,b) = ta(v,b)}. «
exists because the set over which we take the maximum iss;lbsended from above, and

non-empty (e.g., includdg. Then for allv, « < v < 3, t1(v,b) < t2(v,b).
Using Lemma 3.14 from Section 3.5.4, the following inedtiedi hold:

up (v — t1(v, b)) - ug(v —t1(v,b0))  ug(v —ta(v,b))
up(v—>) —  wug(v—>) ug(v —b)

This, combined with (3.5), implie8; (F" ' ot1)(v,b) > 91 (F" ots)(v, b), which means
that F"~1(t1(v,b)) — F" 1(t2(v,b)) is strictly increasing inv for « < v < 3. Since
F= 1ty (a,b)) = F" Yta(a, b)), F"(t1(v,b)) > F" (ta(v,b)) is only possible if

t1(v,b) > ta(v,b) for all & < v < 3, which is a contradiction. m
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3.3 The Expected Social Welfare
3.3.1 Bidders’ Choice: Buy-price or Standard English Aucton?

When a bidder needs to choose between a buy-price and atdinizlish auction, which
one should he prefer? To decide, we need to compare his expprifits. For a bidder
with a valuation below, the two auctions are equivalent because his equilibriuategy
remains the same. For a bidder with valuation at or aliolet belowv, he follows the
same strategy as in the standard auction as long as the seighest bidder valuation is
below the threshold price. Otherwise, his expected extia fgam attending a buy-price
English auction, instead of a standard one, is
(3.12) / U v —b) — ulv — 2)) dF ()

t(v,b)
Next, we calculate the bidder’s gains when he is risk-averseeutral, respectively. Sup-
pose the bidder has CARA utility,(x) = (1 — e~%")/a, wherea > 0 is the absolute level
of risk aversion. If the bidder is risk-neutral, = 0, ug(z) = lim, o uqe(z) = z’. The

CARA utility satisfies the following

ua(:p)l— Ua(y) =ug(x —y) foralla>0,z,y €R
ug(y)
Ug(—1) = —Zzgg foralla >0,z € R

Applying them in (3.5), we get
wa(b— t(v,0) (F" " 0 1)) (v) = ua(b — 0) " (v)
Solving it with the boundary conditiot(b, b) = b yields

t(vyb)u —x nl(g) = vu —x Ly
/,, J(b— ) dF <>—/b o(b— z) dF"(2)

"Subsequently, whenever we mention CARA utility we alsoudel the linear utility function.
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(3.13) /t: ) (b —x) dF"Yz) =0

Using equation (3.13), a bidder with CARA utility can calatd his threshold pricgwv, b).

Rewriting (3.12) and using (3.13), we get

/ (v — b) — (v — ) AF"L(z) = —ul (v — b)/ (b — ) dF"1(z) = 0
t(v,b) t(v,b)
Hence, a bidder with CARA utility and a valuation b < v < © gains no extra expected

profit from attending a buy-price English auction instead sfandard one.

However, bidders with valuation aboweare no longer indifferent between a buy-
price and a standard English auctions. Most bidders willditeb off in a buy-price English
auction. If the buy price is low and < 7, however, then some bidders with very high
valuations will prefer the standard English auction whéeytdo not have to participate in
the random draw with other unconditional bidders; thusir ttleance of winning is higher.
We have not calculated the exact conditions under which debigvith a high valuation
prefers a standard English auction, but we conjecture limtbuld not happen with most

value distributions unless the buy price is set to unredsdgraw levels.

3.3.2 Seller's Choice: Buy-price or Standard English Aucton?
3.3.2.1 Risk-neutral Sellers

Definety = lim,_5 t(v,b). We have seen that whef > r is in equilibrium, all bidders
follow the threshold strategy with a strictly decreasingnsuring that the bidder with the
highest valuation wins. The revenue equivalence theordrtghas true only when both the
seller and the bidders are risk-neutral, implies that amisltral seller's expected profit in
a buy-price auction is the same as that in a standard one. élsttiler hand, whety; > »
does not hold, bidders with valuations abavéllow different strategies and the auction

no longer guarantees that the bidder with the highest valuatins.
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bidder’s

threshold price
D b
Traditional
straltlegy Threshold
strategy
’," --------------------------------------------------------------------------------
Q B B B .
r b v bidder’s
valuation
dFn—1(z)

Figure 3.3: The buy-price English auction is efficient i ffx T—FI)

When bidders have CARA utility antl, > r, we can derive the following from

equation (3.13)

0= /vua(b —z) dF"Yz) < /vua(b —z) dF"Y(z)

which implies

v—v

o
(3.14) lim t(v,b) =tz > r <~ / ug(b—2) dF"Y(z) >0

When buyers are risk-neutral, i.e.= 0 andu,(b — x) = b — x, the condition of

(3.14) is equivalent to

/vbdF”_l(x) > /vxdF”_l(x)

s s

which can be rewritten as

v dF"1(x)
(3.15) b> / e =

This result can be summarized in the following theorem (sgarg 3.3):

Theorem 3.9 In a buy-price English auction, if both the seller and buyams risk-neutral

and the buy price is set at least as high as the expected maxiraluation amongn — 1)
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buyers on the condition that at least one of {he— 1) buyers has a valuation at or above
the reserve price, then the seller's expected profit is timeesas that in a standard English

auction, and the buy-price English auction is efficient.

If the second-highest bidder valuation is below the resprige, the winning bidder
would only pay the reserve in both the standard and buy-micgions. Therefore, to
compare the two auctions, it is sufficient to consider theeetqr seller revenues conditional
on having at least two bidders with valuations no lower thanreserve. For the following

discussion we assume this condition.

How high should a buy price be? We know that the buy price isntlagimum
revenue the seller gets from a buy-price auction, thus thea®d seller revenue in such an
auction is always less than the buy price. This implies tbatte seller to have the same
expected revenue from the buy-price and standard auctstreshas to set the buy price
higher than her expected revenue from a standard auctentfie expected second-highest

bidder valuation).

The criterion on how to choose a good buy price in Theorem@l&vs the above
intuition. The maximum valuation of arbitrarfy, — 1) bidders is usually higher than the
second-highest valuation. They are equal only when theethos — 1) bidders happen
to be the bidders with the lowest — 1) valuations, but in all other cases the maximum
valuation of arbitrary(n — 1) bidders is equvalent to the maximum valuation among alll

bidders.

Another intuitive way to obtain a lower bound of a well-chod®y price that guar-
antees the revenue equivalence between buy-price andastiaadctions is to study the
expected payment of the bidder with the highest typeln the standard auction, the
type bidder's expected payment is the expected maximunatratuof all other bidders,

which, if the revenue equvalence holds, is also his expgugdent in the buy-price auc-
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tion. Since his maximum payment is the buy price, the buyepmcist be at least as high as
the expected maximum valuation of all other bidders, whicxactly what is depicted in

Inequality (3.15).

Inequality (3.15) is important because it helps the setlerthiioose an appropriate

buy price. Example 3.10 demonstrates how to calculate therloound for the buy price.

Example 3.10 In an auction where there are two risk-neutral bidders wigtuation drawn
from the uniform(0, 1] distribution and the seller’s valuation & the optimal reserve price

is 0.5 and the lowest buy price that satisfies the revenue equivals.75.

In this example F'(z) = z and f(x) = 1 for = € [0, 1]. The optimal reserve price

satisfies = (1 — F(r))/f(r) = 1 — r, thusr = 0.5. From inequality (3.15) we get

v dF () ! dz 9 9
b > i ) =12 052 =0.75
—/r T Fri(r) /0.53“’1—0.5

Note that this lower bound of the buy price only applies totiams with two bidders. As
the number of bidders increases, the buy price should atseadse in order to ensure the

revenue equivalence.

The same lower bound can also derived from (3.13):
0= /U U (b — ) dF" Y (z) = /U (b—x)de=(v —t(v,b))%_v—_t(v’b)
t(v,b) t(v,b) 2
which implies that the threshold functidtiv,b) = 2b — v. v can be at most, so the
condition for the threshold function staying above the mesést¢(1,b) =20 — 1 > r =
0.5 = b >0.75. 0.75 is also the expected maximum valuation of one (he-, 1) bidder
conditional on his valuation (the valuation of one outof 1 = 1) is at least).5. Such a

bidder has a uniforni0.5, 1] valuation distribution with an expected valuation0of5. m

We can also characterize the expected profit of a risk-rleséléer facing risk-

averse buyers in the following theorem:
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Theorem 3.11 In a buy-price English auction, if the seller is risk-neutrthe buyers are
risk-averse, and the buy price is set at least as high as thea®d maximum valuation
among(n — 1) buyers on the condition that at least one of fee— 1) buyers has a valu-
ation at or above the reserve price, then the seller's exgbprofit is higher than that in a

standard English auction.

PROOF Theorem 3.8 says that the more risk-averse the buyersarewer their threshold
prices. This increases the seller's expected profit becauwe buyers will pay the buy
price instead of the second-highest bidder valuation. Bat$tandard auction, the seller’s
expected profit does not change with the buyers’ levels kfaigrsion, as buyers bid up to
their valuations regardless. Therefore, when buyers skeanierse, a risk-neutral seller is

better off in a buy-price English auctionm

3.3.2.2 Risk-averse Sellers

Let us now calculate the expected profit of a risk-averseisalith risk-neutral buyers.
The calculation presented below is similar to that of Rilag &amuelson [37] except that
the seller’s utility functions(x), wherez denotes the sale price, is more general because
the seller under analysis can be either risk-neutral oraiskse:s(z) = x if the seller is

risk-neutral ands(z) is strictly concave if the seller is risk-averse.

At the equilibrium, the seller’s expected profit from a biddeth a valuation below
bis the same as in a standard auction. Itis given by the equgiy) in Riley and Samuelson
[37]

Po(v) = s(r)F"\(r) + / s(@) dF" () = s(o) " (v) - / S (2)F"(z) da
The seller's expected profit from a bidder with a valuatioa [b, v) is

P(v,b) = Po(t) + s(b)(F" ! (v) — F"7(t))
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Hence, the seller’'s overall expected profit fromvabidders, denoted bli(v, b), is:

v

(3.16) My(v,b) = n(/TbPo(v)dF(v)—i-/b P(v,b)dF(v)) +

b(1 = F™(©)) = n(b—r)F"~}(r)(F(0) — F(7))

Since we can regard no buy price in a standard auction asghawary large buy price, i.e.,
b — oo, proving that a risk-averse seller is better off in a buye@riEnglish auction with
risk-neutral buyers is equivalent to showing that théerivative ofIl(v,b) is negative

when (3.15) holds. Thi-derivative ofll(v, b), whens = o = , is

DoTlu(v,b) = n /b " 0, (0. b) dF(v)

= o [ (st = senaF o)) +
$'(B)(F" (v) = F*~1 ()] dF (v)
Differentiating (3.13) by with a = 0, i.e., uq(2) = =, e get
(3.17) Frt(w) — F*Ht) = (b — 1) (0o(F" 0 t)) (v, b)
Applying (3.17) ands(b) — s(t) > s'(b)(b — t) due to the concavity of, we get
BT, (v, b) < 0.

The inequality shows that as long as (3.15) holds — i.e., tlyedrice is set high enough
that no one uses a conditional or unconditional strategigkaaverse seller is strictly better
off in a buy-price English auction than in a standard one wierers are risk-neutral. The
equality holds if and only if the seller is risk-neutral, ilyipng that the seller’s expected
profits from a buy price is the same as in a standard auctiomedx¥er, risk-averse buyers

further increase the seller's expected profit. Hence, thewWing theorem holds:

Theorem 3.12 In a buy-price English auction, if either the seller or theybts are risk-

averse and the buy price is set at least as high as the expew&inum valuation among
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(n — 1) buyers on the condition that at least one of the— 1) buyers has a valuation
at or above the reserve price, then the seller's expectefit igchigher than in a standard

English auction.

Therefore, we can conclude that regardless of whether ther serisk-neutral or

risk-averse, she cannot lose by utilizing buy prices in Bhghuctions.

3.4 Concluding Remarks

This paper has analyzed buy-price English auctions of amigilole good in the general
setting ofn bidders with continuous, independently distributed, ariehpe valuations. We
have proved that in equilibrium unique reference poinendv exist @ < o, with both
above the buy price) so that a bidder with a valuation betwberbuy price and bids
the buy price when the current high bid reaches a threshate |fire., the competition
among bidders is heated and has reached a level which matfes saidder unwilling to
risk waiting further and thus bids the buy price), a biddethva valuation betweefi and
© bids the buy price on the condition that there already esistalid bid above or equal to
the reserve (i.e., at least one competing bidder existsl) adnidder with a valuation at or
above? bids the buy price unconditionally (i.e., regardless of thike there is competition

or not).

We have proved that the threshold bidders’ equilibrium ghodd prices can be
calculated using the buy price, bidders’ utility functipaad their value distribution. These
threshold prices are between the reserve and the buy pnickstéctly decreasing with
valuations. In other words, the higher a threshold biddexfsation, the lower his threshold

price.

We have also shown that if the buy price is set at or above arlbaend, then

all bidders with valuations above the buy price are thrasdadders; that is, there are no
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conditional or unconditional bidders. Since the threshmldes are strictly decreasing with
the bidders’ valuations, the bidder with the highest vaturatvill reach his threshold price
first, and thus the auction guarantees that the highestidde and the equilibrium yields
full efficiency. In addition, the more risk-averse a thrdgdhudder, the lower his threshold
price. In other words, a more risk-averse bidder tends tahmdouy price earlier, which
helps to explain why the seller can gain higher expectedtgrofn risk-averse buyers than

from risk-neutral buyers.

Clearly, the buy-price option can reduce a buyer’s risk:dirig the buy price, a
buyer can obtain the item at a fixed price, and he thus no Idmagto worry about losing
the auction to a bidder with a higher valuation. Becauseisfdhservation one may expect
that risk-averse buyers are better off in buy-price Enggisbtions, but this is not true. To
reduce the risk of losing the auction, risk-averse buyedste buy price more often than
risk-neutral bidders. They may bid the buy price even in €agkere there are no other
bidders with valuation above the buy price, and therefoag, more than they would have
in a standard English auction. In fact, we have proved thanmMbuyers are risk-neutral
or uniformly risk-averse, and when the buy price is propsdy above a lower bound, the

buyers’ expected utility in a buy-price English auctiontie same as in a standard one.

If risk-averse buyers’ expected utility does not increash whe introduction of a
buy price even though their risks are reduced, then theiee®d payment must increase
to offset the positive utility of the reduced risk. This igist again explains why the seller's
expected revenue is higher in the buy-price English audtiam in a standard one when

bidders are risk-averse.

In addition to the seller’s higher or equivalent expectagtneie, the seller’s risk is
also reduced in a buy-price English auction because therseill often get the buy price
instead of some unpredictable payment either below or abbmvéuy price. This obser-

vation in turn implies that a risk-averse seller always @refa buy-price English auction
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because in it her expected revenue is not lower than that iaraard one when the buy

price is properly set and, at the same time, her risk is ratluce

The above results do not follow in cases with temporary amitéd buy prices,
as neither auction can guarantee that the bidder with theektgvaluation wins when all
agents are risk-neutral. In an English auction with a temgobuy price, bidders have to
decide whether or not to use the buy price without observingkéd, and, therefore, their
best symmetric strategy is to find a valuation level abovectvktiey unconditionally exer-
cise the buy price. This leads to inefficient outcomes redyuthe seller’s expected profit
[38]. Similarly, an English auction with a limited buy priig also inefficient. Although
the temporary and limited buy prices can increase the saahre when players are risk-
averse [31, 39], they lower the expected social welfare witayers are risk-neutral. Thus
temporary and limited buy-price English auctions are gaheinferior to the ones with
permanent buy prices. This result implies that the permiameyzprice auctions offered by
Yahoo!, uBid, and Amazon are, in theory, more beneficial kagénts than the temporary
buy-price auctions, like those offered by eBay, or the kdibuy-price auctions, like those
offered by labx, especially for unique and used goods wheyers have private valuations
and face relatively high risks. While the positive networtegnality has contributed sig-
nificantly to the popularity of eBay, features in Yahoo!, dBand Amazon auctions also
have their own competitive advantage&or practice, we recommend that auction houses
choose appropriate policies with respect to buy pricesjecimarket research on the play-
ers’ degrees of risk aversion in different markets, and ssggtrategies to auction sellers

how to use buy prices for additional revenue.

8n addition to the good policy of utilizing buy prices, YaHpoBid, and Amazon have some other advanced
features. For instance, at the time when this paper is writt@hoo! and uBid authenticate buyers more
rigorously than eBay by requiring valid credit card infottina for registration. Yahoo! even asks for two
passwords for the purpose of authentication, which redingesumber of non-paying winners and the fraud of
shill bidding [40]. Yahoo! also allows a seller to specifgthutomatic extension of an auction if a bid is made
within the last five minutes of the auction, and this helpsrevpnt last-minute bidding [41]. Moreover, Yahoo!
auctions charge relatively low intermediation fees.
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Relaxing the assumptions of the revenue equivalence timel@@, 37] leads to dif-
ferences among the English, Dutch, sealed-bid first-Paice sealed-bid second-price auc-
tion mechanisms[42]. Maskin and Riley [43] provide a detilnalysis of auctions with
risk-averse buyers. The most notable result related toem@arch is that when bidders are
risk-averse, first-price sealed-bid and Dutch auctionsigeohigher expected seller profit
than second-price auctions. Using a two-bidder two-typelehoBudish and Takeyama
[34] conclude that a buy-price English auction can be sopewnen to the first-price sealed-
bid and Dutch auctions when bidders are risk-averse. Itavbalinteresting to investigate
whether this result remains true in a general setting bidder with arbitrary value distri-

bution.

Another extension of our model would consider the time factith the pace of
transactions getting faster and the Internet's aroune:ibek operations allowing random
arrival of traders, the temporal property of a trade becomeseasingly important. We
suspect that delay-averse auction sellers and buyers aeelikaly to use buy prices than
delay-neutral or delay-taking buyers, and that the shedeuction cycles would increase
the market liquidity. Lucking-Reiley [44] mentioned thattuse of a buy price is to “allow
buyers to buy an early end to the auction by submitting a seiffity high bid.” Mathews
[32] modeled eBay’s temporary buy price auction with a tinmcdunt and showed that
when the seller and buyers are risk-neutral, even tempduayyprices that are exercised
with positive probabilities are welcome, because buyeesvéliing to pay more to get
the item sooner and/or the seller is willing to give up somé&af expected profit to get
the payment sooner. In contrast to an analysis of eBay’s aeanp buy price model with
uniform bidder distribution, we need a more general modeanalyze the temporal effect

of utilizing permanent buy prices in auctions with arbiyréidder distribution.

Entry costs to auctions may also affect the comparison ketway-price and stan-

dard English auctions. Rothkopf and Harstad [42] note tHagmpotential buyers expect
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strong competition for an item, they may not invest effootenter the auction because the
winner can only expect small profits. A buy price can guammteninimum profit for the

winner and, hence, may attract more bidders.

Another research direction is to study how the seller usgspbices as signaling
devices. Too high a buy price may alienate buyers from bigldifioo low a buy price
may convey information on adverse quality. Ultimately, ighit even be possible to embed
a Dutch auction within an English auction by allowing buycps to decrease during the

auction.

While we have only modeled private value auctions, buy griceuld also prove
beneficial in common value models. In a common value aucti@puy price is a strong
signal from the seller about the value of the item, which celp lheduce the errors in the
bidders’ value estimates and thus may lower the “winnens&ueffect, in turn increasing

the seller’s expected profit.

3.5 Detailed proofs
3.5.1 Proof of Proposition 3.2

PROPOSITION 3.2:t(v, b) is strictly decreasing in whenb < v < 0.

PrROOF We first prove that(v, b) is non-increasing irv for all v > b. Prove by con-
tradiction: assume(v, b) is increasing inv for all v > b, that is, for someyy < vy,

to = t(vo,b) < t; = t(v1,b). Since we assume thét is strictly increasing, every bidder
would have a unique valuation and there will not be randoawdrases. When the auction
clock reacheg, a bidder with a valuatiom; can either jump to the buy price immediately
for a guaranteed(v; — b) profit, or continue bidding and wait to jump @t Since by our

assumptiort; is this bidder’s equilibrium threshold price, jumpingtatshould give him
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expected profit no less than jumpingtgt

u(vy — b)Gp_1(t1) + /tl u(vy — x) dF" () > u(vy — b)Gp_1(to)

t dF"=(z) Gn-1(t1)
(3.18) /to ’U,(Ul — Q?)m > u(vy — b) (1 - m>

On the other hand, for the buyer with valuatiqy jumping to the buy price 4, is at least

as good as continuing bidding and jumping at

u(vo — b)Gr—1(to) = u(vo — b)Gp—1(t1) + /tl u(vg — x) dF" 1 (z)

Goa (1) t dF"(z)
(3.19) uvo =01 G0) 2 /t “o =G )

Sinceu is concavegy < b = u(v; —x) —u(vg — x) < u(vy —b) — u(vy — b). Together

with (3.18), (3.19), we have

t dF”_l(a:) 1— Gn—l(tl)
to Gn-1(to) — Gr-1(to)

Gn-1(to) — Gn-1(t1) < F" " X(t1) — F" (to)

Recall thatG,,_1(¢) is defined to be the probability that a bidder with threshodkercises
the buy price and wins the auction. Lowering the threshatunft; to ¢, increases the
chance of successfully using the buy price by at least theafitty that there is another

bidder with a valuation betweeg andtq, i.e.,
Gn_1(to) — Gn_1(t1) > F" 1(t1) — F" L(to)
HenceG,,_1(ty) — Gn_1(t1) = F"1(t;) — F" 1(tg), and (3.19) becomes

vy — BY(E"L (1) — 7L (tg)) > / " vy — @) dFP(2)

to
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0> / 1 (u(vo — ) — u(vy — b)) dF" ()

to

which impliesF'(ty) = F(t1). SinceF is strictly increasingt, = ¢; must hold, contradic-
tory to our assumption. Therefore, we have provedthat) is non-increasing im for all

v > b,

Now we further prove that(v,b) is strictly decreasing wheh < v < o. Since
by definitiont¢(v,b) = r, provingt as strictly decreasing indicaté&, b) > r whenb <
v < ¥. Again, prove by contradiction: assume that fgr> r and somé < vy < vy,
Yo(vg < v < vy = t(v,b) = ty), that is, all bidders with valuations betweegand
v1 pool at the same threshold prieg This implies a positive probability that more than
one bidder with valuations betweep andv; would jump to the buy price simultaneously
whent is reached and the winner would be chosen randomly among. tiBarmif one
of them decides to jump earlier (i.e., when the auction cleEkchesty — ¢ instead of
to for some arbitrarily smalk), he can avoid this random-draw gamble and increase his
chance of winning. By doing so, he can increase his expeatefit pnd only suffer at
moste additional loss. Clearly, it is small enough, he can be better off by jumping
earlier. Therefore, pooling cannot be an equilibrium. Thus, b) is strictly decreasing

whenb < v < 9, i.e.,t(v,b) >r. m

3.5.2 Proof of Proposition 3.3

PROPOSITION 3.3:t(v, b) is continuous iy whenb < v < 9.

PROOF We first provet(v, b) is right-continuous iy whenb < v < o, i.e.,t(v,b) > r.
Letvg > b, tg = t(vo,b), v > vg, andt; = lim,~ 4, t(v,b). The monotonicity ot (v, b)
impliest < ty. Sincet(v, b) is the equilibrium threshold, for the buyer with a valuatign

jumping to the buy price when the auction clock reactiesd) < ¢, is at least as good as
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jumping att:
to
(3:20) u(o = H)Goos(40.8) = u(v=H)Gualte) + [ alv— )P )
t(v,b)
Recall thatG? is continuous. Therefore, we can take the limit in (3.20) as v to obtain
Gn_l(to) /to an_l(:L‘)
u(vg —b) > u(vg —b)———= + u(vg — r)————=
o=t 2wl =g Z et ). " e S
Sincet (v, b) is non-increasing im and nowv \ vy, t(v, b) cannot take any value between
ty andty. t(v,b) is strictly decreasing when it is above thus whent, > r we have
T(t;) = T(to), which by equation (3.4) implie§,,—1(to) — Gn-1(t+) = —(F""L(to) —
F"=1(t,)). Therefore,
fo dF" ! (x) F=(tg) — F"(ty)
OZ/ u(vg — ) ———= —u(vg — b
ty ( ’ )Gn—l(t-l-) ( ’ ) Gn—l(t—i-)

o2 [ (uten =) - aten ) )

Forz < b, u(vg — z) — u(vg — b) > 0 andty < b, therefore ifty > t,, the integral on the

right side would be strictly positive. Therefore, the ab&wenula can only hold it . = .
This completes the proof of the right-continuity b, b) with regard tov whent(v, b) > r.

Using similar arguments, we can prove the left-continuity.o m

Note that the continuity of(v,b) in v is only true whent(v,b) > r; it is possible

thatt has discontinuity at some point whereuddenly drops to.

3.5.3 Proof of Proposition 3.5

PROPOSITION 3.5: Lett be the function defined by (3.5) and fet> b satisfy that for
all z < o thatt(z,b) > r. If all other bidders with valuations:;, b < z < o, follow the
threshold strategy(x, b), then the optimal threshold strategy of a bidder with vabmtb),

b <w < 0, Iisto uset(v,b) as his threshold price.

For the proof we will need the following lemma:
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u(z + d)

Lemma 3.13 For anyz > 0 andd > 0, is strictly decreasing in:.

PROOF Letz < y.

uz+d) 1 = u@ +d) — u(z) > uly +d) — u(y) because is concave
u(z) u(z) - u(z)
L Uy +ud()y)_ “W) pecause is increasing
_ ouy+d)
- a0 P

PROOF To show that (v, b) = p* maximizes the expected profit of a bidder witk v <
0, itis enough to show that (3.7), having the same sigﬁ%ﬂ, is positive ifp < t(v, b)
and negative whep > t(v,b). Sincew(-,b) is the inverse of(-,b), w(t(v,b),b) = v.
w(-,b) is strictly decreasing; thereforey(p,b) < v if p > t(v,b) andw(p,b) > v if
p < t(v,b).

First consider the case whenis in the range of, i.e., v = w(p,b) < v and

t(w(p,b),b) = p. Substitutev = w(p, b) into (3.5)

P p,) L u(w(pb) — b)) -
O (FT o 0)(w(p.b),b) uw(p.b) ~ b) u(w(p,5) — b)

Substituting this into (3.7) we get

(3.21) vp
v

Applying Lemma 3.13 withd = b — p, z; = v — b, andzs = w(p,b) — b, we
can see that (3.21) is positiveuf(p, b) > v, i.e.,p < t(v,b), and negative ifv(p,b) < v,
i.e.,p > t(v,b). This shows that(v, b) maximizes the expected profit from the threshold
strategy as long as the threshold is in the range 8incet is continuously decreasing and

t(b,b) = b, the range of (v, b) for b < v < v is an interval(Z, b).
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Whenp is not in the range of, i.e.,» < p < t and no other bidder will use a
threshold price below or equal 19 using the threshold pricg a bidder can only lose to

conditional or unconditional bidders. Therefore,
Gn-1(p) = F*1(0) — F"}(p)

Applying it in (3.6) we get

aHt(U,p)

_ _ o o n—1/
op v —p)—ulv—b)FT(p) >0
which implies thafl; (v, p) is strictly increasing for alp € (r,¢].

Combining this with the case in whighe [¢, b), we getlI; (v, p) strictly increasing
for all p € (r,t(v,b)) and strictly decreasing fgr € (t(v,b),b). This proves that, as long
as all other bidders use the threshold stratggy- ¢(v,b) maximizesll;(v, p) for a given

v; that is, the optimal threshold price of a bidder with valoat is ¢(v,b). =

3.5.4 Comparing utility functions based on the level of riskaversion

Lemma 3.14 Letu; : RT — RT, uy : RT = R be twice differentiable utility functions,
u1(0) = u2(0) = 0, andu)(z) > 0, uh(z) > 0 forall z > 0. Leta; = —uf/u} and
ay = —ul /ul, be the absolute level of risk aversion.alf(x) < as(z) for all z > 0, then

the following inequality holds

ug(x)
‘v’w,y<0<y<w = 0w @) > u2(y))

Whendy (0 < y < z) such that the equality holds, there is a constastuch thatu, (z) =

Aug(z) forall 0 < z < .

PROOF Let\ = uy(x)/uz(x). Partl: We want to prove thatr, y,0 < y < x

ur(x) _ ui(y) u1(y)
@ - wm) T wmly) T W) maw) =0
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Prove by contradiction: SuppoSg (0 < y <z A Aua(y) — ui(y) < 0), thatis,Jy(0 <
y<az A JJ(uh(v) —uj(v)) dv < 0). Together withu (0) = uz(0) = 0, it implies that

thereis &,0 < z < y, s.t., \uf(z) — v} (2) <0, thatis,u)(z)/ub(z) > .

Note thata; = —u} /u} = (—Inu)) andag = —uf/uly = (—Inw)'. Thus for all

as(v) — a1 (v) = (m “;1(“))/2 0

us(v)
This means that/; /uj, is non-decreasing. Thereforéy(v > z = (v)/uj(v) >

A = luh(v) —u)(v) <0). Hence,

Nua(i) = 1 (#) = M) — ua(9) + [ Qo) —4(0) v <0

which contradicts the definition of = u (z)/uz(z). Therefore, the following must hold:

<

~—
~—

1(z > ug(x

1(y) U2(y))

Part Il: Assumedy (0 <y < A Aug(y) —ui(y) = 0), thatis

Vx,y<0<y<x ==

<

Y
/0 (i (0) — 1ty (1)) dv =0

Note thatu} /u} is non-decreasing. In order to satisfy the above, eith¢f < z <y —>
Mib(z) —uf(z) = 0) or3z1,22(0 < 21 < 22 <y A Auh(z1) —uj(z1) >0 A Aubh(z2) —
u}(z2) < 0). Butthe later case means that(z, < v <z = Auj(v) — u)(v) < 0),
thus

o) = () = Moy~ ) + | () =) v < 0

which contradicts to the definition of = w; (z)/ua(z). Thus the earlier casez (0 < z <
y = Auh(z) — uj(z) = 0) must be true. Consequently, together wiif0) = u(0) =

0,wegetvz(0 < z <y = Aug(z) —wi(z) =0).

Forvz,y < z < x, applying the inequality result in Part I, we have

uy(z)
u1(y)

uz(z)  Aug(2) . u1(2) S u1(y)

Zw) ) a2 © Nua(y)

=1 = Aduz(z) —ui(2) <0
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Also, Part | says thatz(0 < z < 2 = Aug(z) — ui(z) > 0). Thereforeyz(y < z <

z, = Mug(z) —ui(2) =0). ThusVz(0 < z <2 = A =ui(z)/uz(2)). m
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Chapter 4

Mechanism Design for Grid Computing

Abstract

We develop a system for grid computing where the price of aging tasks are determined
by an audited market-exchange. We show a method to providefeable certificate, called
“witness,” of program execution with the following propertf two different agents running
the same program on the same input produce the same withasproves with certainty
very close to 1 that both agents have executed the prograectgr Using these witnesses,
a trusted intermediary audits grid agents by dispatchimgtidal work units to different
agents and comparing their results. The results of pastsacidiate a reputation history for
agents, which is used to offer different prices to consurbased on the expected reliability
corresponding to a reputation history. We allow reputatitmbe traded, instead of being
tied to individual agents, and we show that in such a remratharket only high-type
agents would have incentive to purchase a high reputatimhoaly low-type agents would

use low reputations.

4.1 Introduction

Many of today’s home and office computes are as powerful asreamputers were a
decade ago. However, most users only use a fraction of thgpuating power. At the
same time there is an increasing number of applicationsdhaire vast amounts of calcula-
tions: movie studios need computers for animation and apeffects renderinght t p: / /

news. bbc. co. uk/ 1/ hi/t echnol ogy/ 4014333. st m). Medical research use it to
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simulate protein foldinglt t p: / / f ol di ng. st anf ord. edu/ papers. ht m ). En-
gineering firms use it to simulate their desighs ( p: / / ww\« 1. i bm coni server s/
deepconput i ng/ sol uti ons/ functional verification. htm ). Astronomers

use itin search of extra-terrestrial lifet(t p: / / set i at hone. ssl . ber kel ey. edu/).

It would be socially beneficial to utilize the idle computipgwer of desktop ma-
chines to solve computation-intensive problems. Comgattiat need computing power
can save floor space, amortization, maintenance and elgctosts by outsourcing these
tasks to desktop users. Desktop users, however, suffer micanveniences from offering
their systems to the grid, such as installation and mainieaf grid applications, increased

network traffic, increase in their utility bill or system tasbility.

Desktop users must receive some monetary compensatiorchiamege for the re-
sources they contribute to the grid. However, this also spke door for fraud, as partici-
pants may skip the computations and guess the result. Toiteis easy to do, for example
itis very unlikely that a signal sample from a radio-telgge@omes from an extra-terrestrial
intelligence, thus one can safely report that the signagaed to him did not come from

E.T. without doing any calculation.

Besides malicious errors, incorrect result can also beechby badly installed
software, computer viruses, faulty hardware or even frosntgo radiation particles alter-
ing memory or CPU state. One way to catch and fix hardwaresisday redundancy, e.g.
using more expensive ECC memory or by running the same adilonlon several CPUs,
comparing the results at every instruction step. Howehés,requires expensive hardware
and high bandwidth physical connection between the couptedessors, and it does not
protect against errors related to software installatioisconfiguration or from opportunis-

tic cheating.

Instead of using expensive custom hardware, our goal isttheicomputations on

cheap desktop computes, but still find a way to be able to cosrtpa runs from two dif-
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ferent, independently owned and maintained systems. Moo@nputers execute billions
of instructions and process gigabytes of data each secantbriipare two runs, one would
need to produce and compare execution traces, which requoraparing several gigabytes
of data each second. But in practice, we could use a compacgdn which fail with a very
low probability. This is a well known problem in data commeations and cryptography:
we need to calculate a hash function of the large data setsexn@enparing. If the hashes
match, then we can say with a very high degree of confidendethibeoriginal data sets
are identical. The advantage of using hashes is that it dote®quire massive amounts of
storage and communication badwidth to hold and transmidian traces. The hash could

be computed on the fly, and requires minimal storage.

Our suggested approach shares some similarities with &€t Platform Mod-
ule (TPM) architecture [45]. The TPM can provide evidenc tequested calculation was
performed using the original, unmodified software, but ieslmot allow the detection of
calculation errors. Also, implementing TPM-based verifaa requires significant effort,
and incorrect implementation is subject to various attackee the protection is circum-
vented, it can be widely deployed. In contrast, our veriftcascheme relies on the correct
computation of a unique hash, which can only be obtained bfppeing the requested
calculation. The resulting hash is not a secret, which m#aighe whole system could be

implemented with open-source code and without the use ofwee modules.

Witness of execution

A witness is a fixed-length sequence of bits, which is deteechby the program being exe-
cuted, and all of its inputs. The sequence should be longgintmake the probability of
guessing it right low, and should be at least as hard to coergmiperforming the requested

task.

We can use the witnesses to verify the correctness of céilmga We do this by
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assigning the same job to two different grid agents, and eoimg the resulting witness val-
ues. When these match, it provides a high level of assurdwatehte result is correct. This
method reliably catches random errors from hardware coewmsn(memory corruption,
or processor miscalculations due to faulty componentsictneking, bad power supply,
failed cooling system etc.), and it can also catch malicieusrs, when the agent skips the

calculations and returns bogus results.

To generate a withess we can generate an execution trace mvhiting the com-
putations and feed that to a hash function. But how can wearobteh a trace? The most
efficient way would be to support this in hardware, the CPUd¢a@ompute a hash of the
execution trace in hardware without any performance losghdps in the future this feature

will be integrated into processors, but until then we needfavare solution.

There are several ways this could be implemented in softwdle easiest, but
most limited method is to modify the compiler to insert ext@e collecting execution
data and feeding it into the hash function. A more univershit®on is to use virtualization
techniques, such as on-the-fly code instrumentation (likeohes used in VMWare or the
Valgrind debugger). This could be even easier for recerguages like Java or C# which
already run on a virtual machine, where the virtual machimglémentation could be mod-
ified to collect execution hashes. Our prototype implent@nauses the first method, a
modified C compiler to generate an execution hash. Even ththig is not a universal

solution, it is sufficient to study the impact of our data gaithg on performance.

The are several important implementation details and aff&l¢hat can have sig-
nificant impact on the usability of this method. How long thesih should be? Suppose
that an average job takes one hour to complete. If each sicis jeerified with a 32-bit
hash function, the mean time between missing a mistake wuailat least 490 thousand
years. To get the actual number, we have to divide this tintk thie probability of fail-

ure, which means that in practice a 32-bit hash would misstlesn one error in a million

74

www.manaraa.com



year period. Of course, when many concurrent computatibeiigg verified, the chance of
passing an incorrect computation as a success increasevgouwith a million concurrent

computations, we can expect less than one misdetectedefaila year.

What type of hash function should be used? Cryptographit fiasctions are
tamper-proof, however they are also more costly to comptren though we cannot prove
it, we conjecture that for our purpose, simple hash funstiare sufficient. The main prop-
erty we need for the execution hash function is that it mustdieard to compute as running
the application which we want to trace. A simple hash fumcitfonot suitable in cryptogra-
phy because for a known hash value it is easy to produce téixtalvhost arbitrary content
which hashes to the known value. However, in our case the valah is the result of the
computation, which is not known until the program has runstbur conjecture is that the
use of cryptographic hashes does not improve the trustimesh of the result. This allows

us to use any easy to compute hash function with a good digtib

The use of execution hashes provide a cheap way to achigviy hidiable compu-
tation results without the need for expensive high-endard. In fact, the computations
can be distributed over the network to external self-irgter@ agents, by breaking up a large
job into smaller work units and dispatching each work uniito independent agents. Two
agents returning the same hash result for a work unit gusgantith a very high probability
that both agents have performed their job honestly and ctyre@rovided that the agents
do not collude. This helps not only to deter agents to cheaitit lsan also catch hardware

errors.

Quality differentiation

In reality not all computations need to be 100% correct. F@angle when a distributed
computing farm is used in a random search of some rare intoymabject, such as a bug in

a CPU design or a protein sequence with some interestingiep etc., then the main goal
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is to maximize the coverage of the search space. On the cdel; there are computations
where errors have catastrophic consequences, such adaumlistiag the orbit of a space
probe. In other words, consumers can be differentiateddb@s¢heir error tolerance. Some
consumers are willing to pay a high price for highly reliat#sults, but an unreliable result
may have no value for them. Other consumers would pay mushféeshe most reliable

results, yet they are still able to compete for resourcesus their willingness to pay is

less sensitive to the reliability of the results.

Our proposed auditing mechanism enables this quality idigzation: it can pro-
vide practically 100% assurance for quality-sensitivestmners, and using the past reputa-

tion of the agents, it can also measure the expected fadtesof agents.

If there is enough demand for less than 100% reliable cdlonk, and the desired
reliability can be achieved by most computers, then it isughato implement an economic
mechanism which would induce self-interested agents testhnperform the computations
assigned to them. This can be implemented at a much lower ica$¢ad of duplicating
all computations, it is enough to repeat just a small samijpllieeowork units, and “punish”

defecting agents enough to make cheating unprofitable.

In addition to discouraging malicious behavior, our medésmnalso provides a
level of assurance against hardware failures caused bty faoinponents, and it creates
incentives for grid providers to maintain their computeryskeep their failure rates low.
While errors caused by cosmic radiation are rare, and itlggafects everyone, errors
from broken components are less evenly distributed: ifehgra problem, it often shows
up quickly, so if a program does not fail due to a hardware lpraton the first day, then it
is unlikely to fail in the future. Therefore, most hardwareoes can be eliminated by more
thorough checking of new machines. This also helps to efitgimalicious hardware errors

coming from greedy agents overclocking their computers.

In the subsequent chapters we will summarize previousetlasults, we discuss
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the technical implementation of the witness system, thefoaleat economic mechanisms
against cheating. First we will show that simple random khmecof each work unit does
not work because it would require too much checking and tgb piayment. Then we'll
show that unconditionally checking one randomly selecteil of a large bundle works
well to discourage cheating, while it is of very low cost. thar, we will look at different
types of consumers and suppliers which allow price-discid@tion based on quality, and it
naturally creates a need for a market for suppliers and coesss We try to find a steady-

state market equilibrium.

4.2 Related research

When the goal of a distributed computing effort is to inveore-way function, i.e. given a
function value, find an input where the function takes thaie/athe verification of the work
is easier. Computing such a function produces a result whiichitself a sufficient witness
of the computation, there is no need to add extra code. Guildvironov [46] show that for
such problems the principal can verify the agents by prepedimg some results and pass
these to the agents together with the desired goal valueecBive payment, the agents must
find the inverse for all precomputed values. Unfortunatilg method is only practical for
problems where the search space is very large and checkivgrmamgember of the search

space is inexpensive.

Much of the existing research on distributed computing $eswon the optimal allo-
cation of resources using economic mechanism design, wiher@location problem itself
is often computationally intractable [47]. They also makegifications about the agents
where it is assumed that an agent is either a rational selbidé with access to fully reliable
computing resources, or faulty nodes with no strategic iehaln contrast, the agents we
study here always act strategically, and their computersiar 100% reliable. And instead

of using mechanism design to allocate jobs, we rely on anasgd market for reputations
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where agents can signal their type and their willingnesewet their computational failure

rates by purchasing a reputation.

Similar to the real stock market, to make the market work, {8e mtroduce au-
diting which uses random checks on the agents’ work andh&gpayment for the work as
well as their future reputation to the outcome of these chedk the spirit of distributed
computing, the auditing itself is distributed by randoméftexting a few jobs which are
assigned to several agents, comparing their results amatiag this until two matching
results are found. This match confirms the correctness ofridehing results and also
confirms the incorrect results from the other agents. Irceffee use unreliable distributed

agents to perform reliable distributed auditing.

The monitoring we propose here is most similar to accourtithgs and auditing of
firms. Firms must document their income, expenses and imeggs, which is an overhead
above the basic function of the firm, similar to the code we tddroduce a verifiable
witness. Firms are periodically audited, where auditoeckhrandom samples to verify the

firms’ operation.

Early papers about reputations assumed that the firm andgtgation is insepa-
rable, thus reputation is not a tradeable asset. Many pajsershe model in [48] where
a single long-lived player faces opponents who participalg in one round, but can par-
tially observe the previous actions of the long-runningypta However, in this framework
reputation can have a negative effect [49]. The problem reitlutations is that once a good
reputation is built, the firm decreases its effort and quddivel and achieves higher profits
by running down a good reputation. Introducing a market émutations eliminates these

issues, because lower quality is punished by the reducee @ithe firm’s reputation.

The monitoring together with the market for reputationsu@s the issues related

to career concerns [50].
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The basic idea of using a general equilibrium analysis tdyarahe market for
firm reputations was first developed in [51], and this moded la¢éer substantially extended
in [52]. Our reputation market model is similar to the mode[52], but we significantly
extend their model. First, in our model a successful outcoamaot be easily distinguished
from failure. Furthermore, we introduce an intermediariovean audit the work of agents
and can make payment contingent on a successful audit.athsfea continuum of agent
types, we will assume that there are only two types of agdmigiever, the types only
determine the agents’ cost of effort, and the agents chbesedffort level, thus indirectly

their success rate, strategically. Finally, we do not igsigents to live for only two periods.

4.3 Technical implementation

We have used the C-Breeze C Compiler Infrastructure [53litoraatically add code to C
programs which computes the execution trace hash. We dbyhiscording the direction
of each conditional branch in the code. But recording themleta branch history can
consume an unlimited amount of memory, and we are not irteatds the actual branch
history, we only use that to make sure that two independemipatations match. For this
it is enough to store a hash function of the complete branstoityi Although we cannot
prove this, we conjecture that for this purpose we do not meagiptographic hash function,
which would require substantial computation overhead. @itial implementation uses
a simple CRC32 hash function. The prototype implementatioreases the run-time of

applications by about 50%.

For each branch we assign a 32-bit memory location whichshaldhift register
with a history of the last 32 branches. At every 32nd branchsilsubroutine is called to
merge the content of the shift register to the global brarstoty hash using CRC32. If a

different hash function is desired, only this single hagtcfion has to be modified.
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4.4 Economic model

e In our economic model we have “consumers” who need to perBome expensive
computations and we have “agents” who have machines witte SpRU time that
they are willing to sell. Consumers and agents do not de#&l @ach-other directly,

instead they buy/sell services from/to a trusted interamydi

e We assume that the intermediary deals with a large numbegesfta and consumers

where no single agent has power to change prices.

e To simplify the discussion, we assume that all computatabs jcan be divided to
identical size units, although our results would hold fotelhegeneous job sizes. We

call these “Work Units.”

e The principal can only verify the correctness of a resulimetd by an agent by re-
peating all the calculations. The computation process tse@dlculate each work
unit produces a unique result that can only be obtained Hgpeing all the compu-

tations.

e Agents do not collude, and if two agents independently retie same result, then

the result is assumed correct.
e Agents can leave and create new identities at no cost.

e The principal has no power to impose penalties on agentegifalse results with-
out performing the computation beyond withholding payntergreviously returned

results.

e The principal keeps record of previously completed worksufor each agent iden-

tity, and determines the future per unit payment solely thasethis history.

80

www.manharaa.com




e Agent identities are tradeable assets and the principalataonnect agent identities

to physical agents.

e We assume that consumer demand exceeds the available ediopytower offered
by agents. Consumers bid for resources by submitting thespierprice they are
willing to pay as a function of the expected failure rate. &hsen this the principal
calculate(v)), the price of a work unit with an expected failure ratewhich is the

highest bid price forp failure rate.

e Agents can reduce their failure rate by choosing their eféael. Let¢(w) denote
the expected failure rate for effort leveland lety;(w) be the cost of effort for agent

1. Note thaty is universal whiley varies based on the agent ability.

e The principal determines the rationally expected failae 1; of each agent based
on the previous work record of their identities, and setspreunit price paid to the
agent top(v;). Note, however, that the principal can delay payment andwtiold

payment for past items, if an incorrect result is discovered

The most obvious way to assure error-free calculations ketp assigning the
same job to agents until two result match (i.e. executiohémsnatch). However, if a small
failure rate is acceptable, then we can do much better, asnlyeneed to verify a small

number of randomly chosen calculations to keep the agemissho

4.5 Monitoring

Agents pick up work units from the principal when they aredseto do calculations and
are expected to return the completed unit as soon as thely.fiigsensure a timely com-
pletion of the jobs, each work unit has an expiration timerafthich the result is no longer

accepted, and the principal reassigns the work unit to ardifit agent.
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Agents get paid after everycompleted work units subject to passing verification.
From the batch of- work units the principal randomly picks one which she alssigas
to an other agent. If the results returned by the two agemt&dentical, then that testifies
that both agents have returned correct results, and bottisagél get paid after they have
completed their units of calculations. If the results do not match, the ppakwill keep
reassigning the unit to other agents until two of the resuiédéch. The two agents with
correct calculations are paid for theirunit batches, but the other agents get no payment

even if some of the other work units they have returned anecor

The principal can perform the random draw for the items toda#ied in advance,
and when enough agents are available, she can use that tirgrihe time an agent may
have to wait for verification after she has completed a batchumits. The only time the
agent may have to wait is when the verified unit is her last imthe batch. For these
last units the principal can pick a unit which has been coexgbdtty an other agent, but
if the two computations do not match, the agent will have td watil her result for the
last unit is proven to be correct or incorrect. The principah minimize the probability
of waiting by using a unit which has been previously caladaby an agent with a low
expected failure rate. Given these measures we can assaitbeheffect of waiting for

verification is negligible.

The principal always sells the unverifi¢d — 1) units from each batch of units,
but she only pays the agents, if the verification is succksstuthe principal can earn
money from selling the work of failed agents, however shedxagnses to cover the cost of
calculating the verified units twice. The principal’s reuerfrom an agent with an expected

failure ratey and a batch of units is

(r— () — (1 — ) (piw) ~ 22

r must be large enough to ensure that the principal is notdasioney. It is also possible
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that the principal earns money from some agents and loseshensadepending on their

expected success rate.

The agents do not know which unit will be verified, therefdre expected failure
rate of the verification is the same as the expected faildecofethe agent. This means that
the compensation is fair: the expected payment of the aggmbportional to the expected

number of correctly calculated work units returned by therag

This is the least amount of verification the principal musta@ensure that agents
do the work. If there were a positive probability that no warkits are checked from the
batch ofr units, then the agent could do no work at all and could stifleex payment in

case the principal skips verification.

4.6 Market

We refer to agents working for the grid as grid providers.d@onsumers have jobs they
need to compute. The grid platform provides a market to medcisumers with providers.
Consumers have a two-dimensional type,f) € R?, wherev is the consumer’s valuation
for a correctly calculated work unit anfd—v is the consumer’s loss, if the result is incorrect.
Grid providers choose effoit > 0 which affects the probability(w) that a work unit is
calculated incorrectly. Grid providers have a tyjpea) € R2. The cost of calculating a
unitisc + aw. ¢, ¢, @« andw are unobservable. Each provider has an identity, and each
identity has a history of verified successes or failuresntities can be traded. Consumers
can only observe the agents current identity and the histiached to the identity. Con-
sumers cannot observe the trade of identities. It is freegate a new identity with no past
history. We assume that the expected future failure rateg¥en identity only depends
on the number of past successes and failures, i.e. theyhisdorbe summarized in a dis-
crete two-dimensional measufe, k) € N? for an identity withn verified successes ard

failures. We search for a steady-state equilibrium wheeeettpected failure rate for each
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identity remains unchanged over time, 1&fn, k) denote this failure rate. The payment

function isp(v), the consumers utility is — ¢ f — p(v).

Unreliable agents can provide reliable results by repgadtie calculations until
two matches. To get a guaranteed result, the principal wkegg assigning the same work
unit to different agents until two results match. The priatiwill only pay for the two
successful calculations, so the cost for the principalvusags 2p(¢) if the agents’ failure

rate iso.

Let py be the cost of the cheapest agent. As we have shown abovepé&gted
calculations even the cheapest agent can deliver reliabldtrat a cos2py. The consumer
must choose between areliable calculation at 2agbr a randomly checked calculation by
an agent with a reputation scape, k) with an expected failure rate @f(n, k). For random
checking, the principal assigm$n, k) work units to an agent, and randomly checks one of
them by also assigning one out of thén, k) units to an other agent. The calculation of
this one work unit is repeated until two calculations mafthe market maker can sell this
checked work unit as a verified work unit f2py. The unverified units in a batch are sold
to the consumers regardless of the result of the checks tigngyice corresponding to the

success probability (that ig;) prior to the verification. The consumer’s surplus is:

s() =v—vf —p(¥)

The risk-neutral consumer chooses> 0 if s(¢)) > v — 2pg, have a positive expected

profit, andy> maximizes this profit, thus the following must hold:

(4.1) p(¢) < min{v,2po} — ¢ f
(4.2) Y(W) = —f if>holdsin (4.1)

Let ¢)(n, k) be the expected failure rate of an agent with a history, e€rified successes

andk failures. The payment for such an agent(g(n, k)) = p(n, k) per unit, if he passes
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the random verification of one out ofunits. LetV{(n, k) be the current market price for
a reputation score df, k) and letV; (n, k) be the market price in the next round. Before
starting to work on a new batch agents can trade identitieth@market. If there is any
identity available which could provide higher expectedgigythen the agent would trade
his old identity to this more profitable one. Note that thet@fsrading the current identity
to the new one must be factored into calculating the paydfis ineans that we can assume
that each agent trades at every period because they camdaiepurchase their current
identity at no cost. We assume that no single agent couldtéfie market prices. Because
of the trade after each round, we do not lose generality hynaisg) that agents live for one
period, and where they purchase an optimal identity at thenbang of the period, execute
r work units assigned to them, then receive their paymengateptheir identity, sell this
updated identity on the market and retire. Agents choose ittentity and their effort to
maximize profit. We assume that there are no budget contstiaiinl agents are risk-neutral.
LetAV(n, k) = EVi(n+1,k) —Vo(n, k), AoV (n, k) = EVi(n,k+1) —Vy(n, k). Note
thatA;V > 0andA,V < 0. Infact,V;(n+1, ) is not known until the next trade, however,
it has an expected value, and the previously defiiad fact denotes the expected change
in the value of the identity. Define

A1V(TL, k) - AQV(n, k)
r

(4.3) s(n, k) =p(n, k) +

s(n, k) the agent’s revenue difference between passing and faiéni§ication on a batch
of r units accounting for both the lost payment and decreasedatgn value.s(n, k) is
determined by the market, and it is not affected by the agezftort. Using this we can

express the agent’s profit per unit:

M, n, k,w)=p(n, k) + AlVin, k) _ ¢ —aw — ¢p(w)s(n, k)
= s(n, k) + szﬁn’ k) _ c—ow — p(w)s(n, k)
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The optimalw satisfies:

—¢/(w)s(n, k) = o
The agent’s effort is increased until the marginal cost @ref«) equals to the marginal
increase in income. Let's assuméw) = e~ v, this implies¢(w)s(n, k) = o andw =
In s(n, k) — In o, thus the agent’s profit is

4 AQV(H, k)

(4.4) I(a,n, k) = s(n, k) .

—c—a(l +Ins(n, k) — Ina)

H(Oé,?’l,,k‘) = Oé(ew —1 —w) —+ M —c
»(w)s(n, k) = « allows us to calculate the expected failure rate for a rejmtaf type
(n, k):

(4.5) v k) = =5

4.7 Separation

High-type agents would choose an identity which loosesfloatue in case of a failure but
it gives higher than average payment plus value increageindse of success. This in turn

implies that these agents choose high effort. Let us exphisgdea more formally.

Let us assume that there are two agent types, co) and (aq, ¢1) with ag > o
andcy > ¢, 1.e. (v, ¢p) is the low type (higher expenses for the same work). In a nharke
equilibrium all agents of the same type have identical etqubprofit, even if they have
different reputation scores, because if one reputatiore ieigive higher expected profit
than an other, the demand for that reputation would incressdting in a higher price to
remove the imbalance. Let andw; denote the expected profit of low and high type agents
respectively, an® = m; — m( be the expected profit difference between high and low type

agents. Agents purchase a reputation which maximizesphafit.
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If reputation (n, k) is used by low type agents only, théH«g,n, k) = w9 and
(v, n, k) < 7, thereforeA(n, k) = II(a1, n, k)—I(ap, n, k) < O©. Similarly A(n, k) >
© is reputation(n, k) is only used by high-type agents andn, k) = © when reputation
(n, k) can be used by either type&(n, k) can be calculated from equation (4.4)
An,k) = co—c1+ap(l—Inay) —ai1(1 —Inag) +
(g — a1)Ins(n, k)
Only the last term above depends on the reputation, all ¢ders are constant. This means
that knowing® ands(n, k) is enough to determine the type of agents using the repntatio
(n, k). There is a threshol& such that reputatiof, k) is used only by low-type agents,
if s(n,k) < E, only used by high-type agentsifn, k) > Z. The only time when the

reputation does not reliably predict the type of its ownewligens(n, k) = =.

This means that in the worst case we have a separating orssgraiating equilib-

rium, depending on if there i, k) such thats(n, k) = =.

Equation (4.5) can be written as

Sg?kf when s(n, k) < =
P(n, k) = M when s(n, k) ==
% when s(n,k) > E

This implies that even the hardest working low-type ageusing less effort than the lowest
effort level of a high-type agent. Also, the expected falate from a low reputation (with
s(n, k) < ) is always strictly higher than the expected failure rate ofixed reputation

(if such exists) which in turn has a strictly higher failuege than any high-reputation (i.e.

s(n, k) > E).

4.8 Consumer pricing

Let us assume two types of consumers, high-type consumés,need verified results,

which they either get from the intermediary and they woulg pa,, or get by repeatedly
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Figure 4.1: The price per unit as a function of the error gate

submitting the same unit until two results match, which nsetéeir type is(vg, vo). An
other consumer type is willing accept unverified resultshwipe (vy, f1), vo < v1 < 2vp.
Further, we assume that demand exceeds supply, thus somgnoens will not be served,
and the consumers’ surplus is zero. Consumers of the sareevijichoose from several
different agent identities with differing quality of sece, but agent identities with higher
expected failure rate will require lower payment, making¢bnsumers indifferent between
these agents. If quality is chosen by consumer typethenv; — ¢ f; — p(¢) = 0, thus
p(v) falls on one of two linear functions. The intersection ofsadinear functions gives

the quality levek),, that separates the consumption of low-type and high-typswoers:

vo(1 — V) = v1 — from:

U1 — Vo

¢m_

i
Quality levelsy < v, will only be used by high-type consumers, and> ,,, will only
be use by low-type consumers, therefore

(¢):{01—f1¢ if ¢S¢m

P vl =) if ¥ >
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Figure 4.2: The game board

E(aln,k) = ¢(n,k)s(n, k)

(46) = ’(ﬁ(n, k) (Ui — flzp(n, k) +
A1V(7’L, k) - AQV(?’L, k) )

r

4.9 Steady state

We try to find a steady sate where the portion of identity tygeeaot change over time. Let

A(n, k) denote the portion of ther, k)-type identities.
An, k) =v(n,k—1)A(n,k—1)+ (1 —¢(n—1,k))A(n —1,k)

For the boundaries, for eaghthere is a number of failures above which the identity be-
comes worthless and disappears from the market, denotieythlis:) > 0. Clearly,d must

be non-decreasing ant{0) = 0. We define\(n,k) = 0 for & > d(n) andk < 0. In a
steady state equilibrium where the number of agents do raotgeh) each discarded identity

must be matched by a ne\, 0) identity entering the game:

M0,0) = dh(n,d(n)A(n,d(n))
n=0

I
—

n

A(n,0) = A(0,0) | | (1 —4(,0))

K3

Il
=)
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The equilibrium can be described as agents moving on an tafgame-board,
where squares of the board correspond to reputation sebgesits can jump to any square
on the board by purchasing a right to move to that square. #&g&en perform com-
putations ofr work units, one of which is randomly verified, and based onrésilt of
the verification, agents move either one square to the rigghdcgess) or one square down
(failure). The lower-left portion of the board will have wad squares corresponding to
worthless reputations. The upper-right squares are oedupy high-type agents, and the
low-type agents live in between, with some squares possiidyed by both low and high

types.

In an equilibrium trade will only occur at the boundaries, ifter a failure when a
high-type agent would have to move to a low-type square er afsuccess when a low-type
agent would have to move to a high-type square. Trading ipraftibited in other cases,
but there is no gain that can be made. This means that we oatyteeknow the value of

these boundary squares. Probably this equilibrium is niofuen

We can first attempt to find an equilibrium where high type #geiill always start
at square(h,0) and will sell their reputation to low types after the firstifae, i.e. high-

types will always have a reputatign, 0) with n > h.

4.10 One-dimensional equilibrium
4.10.1 Pure strategy equilibrium

Or even more extreme, assume any reputation with a histofgilafe is worthless. This
implies that low-types will sell to high types when they re&g, 0). Note that if there were
such equilibrium, that would imply that high-types are sdizing low-types.

To simplify notation in this one-dimensional case, we ussfthlowing:

Vi =V (3,0), pi = p(i,0), ¥y = 1(4,0), s; = s(4,0)
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Also assume that the value and payment for(all0), n > h reputations is the

sameV}, andpy,. This impliess;, = p, + V3, /r and

Vi o
— =S — = — —
oS h= p(¥n)

And for ¢ < h we have

Vi «
s —pi = —9 —p(i)
r i
Fori = h — 1 this implies
(05} o (675} .
n p(¥n) = o p(¥n-1)
Equation (4.4) can be rewritten as
4.7) (e, n) = % —cop—a(l —Inyy,) — %

Recall thatr, (1) denotes the expected profit of low-type (high-type) agents

[0
™™ = w—z—CO—ao(l—lndlo)
+ 1 1 i—
Totco o Ly, L PWiz1)
ap i Y1 ap

T = p(n) —ec1 —ai(l —Inyy)
The agents do not like to lose money:

0<7r0:%—co—a0(1—lnwo)
0

The high-type agent must prefer reputati@n0) to (h — 1,0):

(7)) a
U1 Un2 P(I/Jh 2) 1
ar(1—Inep_1 —Ina; +Inag) < pp) —c1 — (1 —Iny)
(7)) (675}

+p<wh_2>—p<wh>—a1(1n % —1&) <0

Vh1  Un_a Yr1 P,
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As before, let\y be the number of low-type agents angd be the number of high-type
agents. At every roungh, \; high-type agents fail and start over purchasinga) repu-

tation. Let), be the number of low-type agents witf, 0) reputation:

h—1
v = A [T =)
i=0
h—1k—1
X=X T - )
k=0 i=0
Substituting\, we get
o h—1h—1
(4.8) =y [[a-v)™
1 k=0 i=Fk
Eliminating7 we are left withh + 1 equations fo + 1 unknowns:
1 1 L p(hi-1)
— +Inyg=—+1Iny; — + , 1ed{l,....,h—1
o vo (05 v i1 ap { J
Vi ap - o
el p(¥n-1) ™ p(¥n)
\ h—1h—1
)\—0 =dny [T -
1 k=0 i=k

Note thatl /z + In z is strictly decreasing far € [0, 1], as its derivative id /z — 1/z2% =

(x —1)/2? < 0. Also
L plhic) _ Vi 0
i1 Qg rog

This impliesy; < ¢ foralli € {1,...,h — 1}. We also want to show; 1 < 1;. Prove

by contradiction, supposg; < ;—1 andi;+1 > v, this would implyV;; < V; which
leads to contradiction i;% — ’%ﬁ) is decreasing in, which is true ify) is small.

Incentive compatibility conditions: high-type agents makore money using high-

reputations, low-type agents make more money with low jmrts. No switching condi-

tions:

m =pp) —c1 —ai(l —Ingy) >
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a0 g 1n—1
_ 4 9)—c—ay|1l—In—————
Yh-1 Y2 Plin-2) ~ e 1( 0 )
(6] o
Mo = —— — —— +p(p_2) — co — ap(l — In 1) >
Yh-1 -2

p(¥n) —co — ap(1 — Iney)

All agents want to make a profit, i.dI(«,n,k) > 0. Since the no-switching conditions
ensure that high-type agents make more than low-typeseitasigh to verify this for low-
type agents, and since all low-type agents have the same, pra§i enough to look at
reputation O:

Co

1
—+1n¢021+—
o ap

Note that this always holds whep = 0.

4.10.2 Solving the equations

For eachh we can solve the equations above, and we can substitute lit@sao the
incentive compatibility conditions. Computer experingeshow that for smalh values
the incentive condition which ensures that low-type ageotsot use high reputation will
not hold, while for largeh values the high-type agents would want to switch to using low
reputations. Our experiments have showed that there isreitliniqueh s.t. the solution
satisfy the no-switching conditions which leads to a uniquee-strategy equilibrium, or
there is a uniqué where the solutions lead to a situation where low-type prefeutation
hto h — 1, while high-types prefer reputation— 1 to h. In this later case we need to look

for a mixed-strategy equilibrium where reputatibiis shared by low and high type agents.

4.10.3 Mixed reputation

Looks like itis necessary in some cases that reputétiof) is shared between low and high

type agents. Let be the portion of low-type agents using reputatigrand for simplicity
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let ¢y, be the low-type failure rate. The expected mixed failure rat

aq

o + (1 — a)a—owi

Lety =0 + (1 — 0)a1/ap. Note thaty < 1.

1 1 1 p(hia)
¢0+lnng—¢i+lnwl %_14— o ie{l,...,h}
Vitr _ a0 -
o p(v¥n) o p(¥nt1)

1 =p(Ypi1) —c1 —ar(l —Inyyg) =

+p(p_1) —c1 — o (1 —In Oélwh)

@

ap ap

Yn  Yn—1
Let A, be the portion of agents with reputatioh, 0).

h—1
A=A [ =)

=0

h—1k—1

(4.9) Moo= [ —vi)+on,

k=0 =0

Divide by A\p:
h—1h—1

A _
)\—Z=ZH(1—¢1‘) "to

k=0 i—k
MYpy1 + (1= 0)A (Z_;¢h — ¢h+1) = (1 —0avn)An

(A= (1 =) A)Vpg1 = (1 = v¥p) Ay
1 — vy
A Qg = 7R
(1=0) Yht1
Divide by ¢,,1 and add to (4.9), usk + \; = 1:

h—1k—-1

11—\, = 1_Wh>\h+AzZH(1—wi)

Yht1 P s
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h—1k—-1

1:1—(¢h+1 7?/%)\ ey ZHl_wZ

Ypt1 —i
’Ywh h k-1
= —— X\, + A (1 —y)

4.11 Conclusion

We show that in a reputation market where an intermedianth@power to measure and
record the past results of agent identities and withholdr@t when the verification has
failed, the reputation can act as a good predictor for theeea success rate of an agent
using that reputation, even if reputations are tradeable hd&le studied a special one-
dimensional reputation mechanism where any detecteddadluring an audit will make the
reputation lose all of its value, thus the reputation is $yntipe number of past successful

audits for a given reputation.

Computer simulations have shown that in this game the higdgrtation will cor-
respond to more reliable results, and agents self-selegpw#ation reflecting their types:
low reputations are only used by low-type agents, high egjmris are only used by high-
type agents and there can be at most one reputation levehwhit be shared by both low

and high type agents.

Our conjecture is that this game always leads to a uniqudileduin, which is
either fully-separating with low-type agents only usingutation(h — 1) or lower, while
high-type agents use reputati@nor above, or the equilibrium is semi-separating, where
reputationh is used by both agent types and the low-type agents use amaretbstrategy
to decide if they sell a reputatiain or take an other batch of calculations, and try to finish

that in order to be able to sell reputatigih+ 1) later.

In our future research we would like characterize the egpigliusing the more gen-

eral two-dimensional reputation measure and, if poss#thley that the reputation market
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helps to avoid equilibria where high-type agents may seirtheputation to a low-type

agent after a successful audit.
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